Answer: 19 cm
<u>Step-by-step explanation:</u>

99 = 
99 = 
198 = (2x + 13)(x - 4)
198 = 2x² + 5x - 52
0 = 2x² + 5x - 250
0 = 2x²- 20x + 25x - 250
0 = 2x(x - 10) + 25( x - 10)
0 = (2x + 25)(x - 10)
0 = 2x + 25 or 0 = x - 10
= x or x = 10
Since length cannot be negative,
can be disregarded
Larger base: x + 9 = 10 + 9 = 19
Eq1) 2r+2s=50
eq2) 2r-s=17
solve for s in equation2 (eq2)
-s=17-2r
s=-17+2r
Substitute s into equation1 (eq1)
2r+2(-17+2r)=50
2r-34+4r=50
6r-34=50
6r=50+34
6r=84
r=14
Substitute into either equation and solve for s
2(14)-s=17
28-s=17
-s=17-28
-s=-11
s=11
(f·g)(x) is x^5 - 5x^4 + 4x³ - x² + 5x - 4
Step-by-step explanation:
- Step 1: Given, f(x) = x² - 5x + 4 and g(x) = x³ - 1 Find (f·g)(x)
(f·g)(x) = f(x)·g(x) = (x² - 5x + 4)(x³ - 1)
= x^5 - 5x^4 + 4x³ - x² + 5x - 4
= x^5 - 5x^4 + 4x³ - x² + 5x - 4
35 - 3(4)
35 - 12
Answer is C. 23
Proportion: a:b = c:d where ad = bc
a = 1 ; b = 50 ; c = x ; d = 470
1 inches : 50 feet = x inches : 470 feet
1* 470 = 50x
470/50 = x
9.4 = x
The model should be 9.4 inches high.