<h2>
Answer:</h2>
Strand of <u>D. DNA</u> acts a template during replication.
<h2>
Explanation:</h2>
DNA replication is the natural procedure of delivering two indistinguishable copies of DNA from one unique DNA particle. DNA replication happens in every single living life form going about as the reason for natural legacy.
During the process of replication, a template is used based upon the information contain by it, new strands are produced. Thus, the old DNA acts as template for replication with help of which new daughter strands are produced.
A volcano talking to the other volcanoes about how he erupted?
If your gloves come in contact with a chemical reagent, remove them, wash your hands, and get a new pair immediately.
Answer:
If there is homologous chromosomes (metaphase I) or duplicated chromosomes/sister chromatids (metaphase II) in the middle of the cell.
Explanation:
Meiosis involves two series of nuclear divisions grouped into meiosis I and meiosis II. Each division has the same number of stages i.e prophase, metaphase, anaphase, telophase etc. Meiosis I involves the separation of homologous chromosomes i.e similar but non-identical chromosomes from each parent.
On the other hand, meiosis II involves the separation of sister chromatids (duplicated chromosome). Since METAPHASE is generally characterized by the alignment of chromosome at the middle of the cell for separation in the anaphase stage, it means that the difference between metaphase in meiosis I and II will be whether it is homologous chromosomes that are in the middle or sister chromatids.
Therefore, according to this question, I would know if the cartoon is in metaphase I or II if:
- there are homologous chromosomes in the middle of the cell (metaphase I)
- there are sister chromatids in the middle of the cell (metaphase II).
Answer:
sarcoplasmic reticulum deteriorates and ATP production is stopped
Explanation:
Rigor mortis is the third stage of death characterized by stiffening of joints and muscles in body. The stiffening occurs because muscles are not able to return to the relaxed state. There are two reasons for rigor mortis, depletion of ATP and increase in calcium concentration in cytosol. Due to these factors the actin-myosin crossbridge is not able to break and the muscles remain in contracted state.
Sarcoplasmic reticulum deteriorates and calcium is released into the cytosol. Sarcolemma ( covering of muscle fiber ) also breaks down releasing extra calcium into the cytosol. Calcium is responsible for formation of actin-myosin cross bridge and when its concentration increases the bridge is formed continuously leading to stiffening of muscles and joints.