Hello!

Explanation:
↓↓↓↓↓↓↓↓↓↓↓↓↓
First you had to subtract by 2 from both sides of the equation.

Simplify

Then you divide by 3 from both sides of the equation.

Simplify it should be the correct answer.

Answer⇒⇒⇒⇒⇒x=88/3
Hope this helps!
Thank you for posting your question at here on Brainly.
Have a great day!
-Charlie
Answer:
<h2>The first graph in the second image is an odd function.</h2>
Step-by-step explanation:
An odd function has a graph that it's symmetric about the origin, that is, the origin is like a mirror. In other words, the graph of an odd function has a specific symmetry about the origin.
So, we have to look for those graph that has symmetrical points in opposite quadrants, I and III or II and IV.
You can observe that the first graph of the second image has this behaviour. You can see that the points are symmetrical across the origin. If you graph a line defined as y=-x, you will observe that such line acts like a mirror.
Therefore, the odd function is the first graph in the second image.
Answer:
<em>£</em><em>1</em><em>9</em>
Step-by-step explanation:
Cheryl = 7 + 5 = £12
this means ova and eva also have £12 at the end
EVA'S ORIGINAL AMOUNT : X -7 =12
X = £19
Check the picture below.
now, you can pretty much count the units off the grid for the segments ST and RU, so each is 7 units long, and are parallel, meaning that the other two segments are also parallel, and therefore the same length each.
so we can just find the length for hmmmm say SR, since SR = TU, TU is the same length,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ S(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad R(\stackrel{x_2}{-5}~,~\stackrel{y_2}{5})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ SR=\sqrt{[-5-(-2)]^2+[5-1]^2}\implies SR=\sqrt{(-5+2)^2+(5-1)^2} \\\\\\ SR=\sqrt{(-3)^2+4^2}\implies SR=\sqrt{25}\implies SR=5](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AS%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%0AR%28%5Cstackrel%7Bx_2%7D%7B-5%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%5B-5-%28-2%29%5D%5E2%2B%5B5-1%5D%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B%28-5%2B2%29%5E2%2B%285-1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%28-3%29%5E2%2B4%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B25%7D%5Cimplies%20SR%3D5)
sum all segments up, and that's perimeter.
Given:
The function is:

It is given that -1 is a zero of the given function.
To find:
The other zeroes of the given function.
Solution:
If c is a zero of a polynomial P(x), then (x-c) is a factor of the polynomial.
It is given that -1 is a zero of the given function. So,
is a factor of the given function.
We have,

Split the middle terms in such a way so that we get (x+1) as a factor.



Again splitting the middle term, we get



For zeroes,
.

and
and 
and
and 
Therefore, the other two zeroes of the given function are
and
.