1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leva [86]
3 years ago
13

A baseball is dropped from a stadium seat that is 73 feet above the ground. Its height s in feet after t seconds is given by s(t

)=73−16t^2. Estimate how long it takes for the baseball to strike the ground.
Mathematics
1 answer:
lisov135 [29]3 years ago
8 0
0 = 73 - 16t^2 
16t^2 = 73
4^2*t^2 = 73
(4t)^2 = 73
<span>sqrt(4t^2) = sqrt(73) </span>
4t = 8.5440
<span>t = 2.136</span>
ANSWER: 2.1 seconds
You might be interested in
The number part when a number and a variable are multiplied together in a term is called the _____.
77julia77 [94]

Answer:

Coefficient

Step-by-step explanation:

-Usually a combination of variables and constants are multiplied to get a product.

-The constant or number part in the multiplication process is called the Coefficient

7 0
2 years ago
Lim n→∞[(n + n² + n³ + .... nⁿ)/(1ⁿ + 2ⁿ + 3ⁿ +....nⁿ)]​
Schach [20]

Step-by-step explanation:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

To, evaluate this limit, let we simplify numerator and denominator individually.

So, Consider Numerator

\rm :\longmapsto\:n +  {n}^{2} +  {n}^{3}  +  -  -  -  +  {n}^{n}

Clearly, if forms a Geometric progression with first term n and common ratio n respectively.

So, using Sum of n terms of GP, we get

\rm \:  =  \: \dfrac{n( {n}^{n}  - 1)}{n - 1}

\rm \:  =  \: \dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }

Now, Consider Denominator, we have

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {n}^{n}

can be rewritten as

\rm :\longmapsto\: {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  -  +  {(n - 1)}^{n} +   {n}^{n}

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[{\dfrac{n - 1}{n}\bigg]}^{n} + \bigg[{\dfrac{n - 2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

\rm \:  =  \:  {n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]

Now, Consider

\rm :\longmapsto\:\displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} }

So, on substituting the values evaluated above, we get

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\dfrac{ {n}^{n}  - 1}{1 -  \dfrac{1}{n} }}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}  - 1}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{ {n}^{n}\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{{n}^{n}\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{\bigg[1 - \dfrac{1}{ {n}^{n} } \bigg]}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to \infty}  \frac{1}{\bigg[1 +\bigg[1 - {\dfrac{1}{n}\bigg]}^{n} + \bigg[1 - {\dfrac{2}{n}\bigg]}^{n} +  -  -  -  + \bigg[{\dfrac{1}{n}\bigg]}^{n} \bigg]}

Now, we know that,

\red{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to \infty} \bigg[1 + \dfrac{k}{x} \bigg]^{x}  =  {e}^{k}}}}

So, using this, we get

\rm \:  =  \: \dfrac{1}{1 +  {e}^{ - 1}  + {e}^{ - 2} +  -  -  -  -  \infty }

Now, in denominator, its an infinite GP series with common ratio 1/e ( < 1 ) and first term 1, so using sum to infinite GP series, we have

\rm \:  =  \: \dfrac{1}{\dfrac{1}{1 - \dfrac{1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{1}{ \dfrac{e - 1}{e} } }

\rm \:  =  \: \dfrac{1}{\dfrac{e}{e - 1} }

\rm \:  =  \: \dfrac{e - 1}{e}

\rm \:  =  \: 1 - \dfrac{1}{e}

Hence,

\boxed{\tt{ \displaystyle\lim_{n \to \infty}  \frac{n +  {n}^{2}  +  {n}^{3}  +  -  -  +  {n}^{n} }{ {1}^{n} +  {2}^{n} +  {3}^{n}  +  -  -  +  {n}^{n} } =  \frac{e - 1}{e} = 1 -  \frac{1}{e}}}

3 0
2 years ago
Find the missing coordinates y+7x=1<br><br> (-1, )<br> (4, )
Pachacha [2.7K]

Answer:

(-1,8)

(4,-27)

Step-by-step explanation:

y+7x=1

Let x = -1 and find y

y+7(-1)=1

y -7 =1

Add 7 to each side

y-7+7 = 1+7

y = 8

(-1,8)

Let x = 4 and find y

y+7(4)=1

y +28 =1

Subtract 28 from each side

y+28-28 = 1-28

y = -27

(4,-27)

6 0
2 years ago
4 12 36 108 n ? whats after n
lilavasa [31]

Answer:

324

Step-by-step explanation:

4x3=12

12x3=36

36x3=108

108x=324

5 0
2 years ago
Eric earned 60 points on his last test. If there were 75 possible points, what was his percent grade?
klemol [59]
This is a proportion problem. Eric earned 60 out of a possible 75 points, so the ratio is 60/75. You put that equal to x, so 60=x% and 75=100%. So it would look like
<u>60</u> = <u>  x  </u><u>
</u>75<u />    100
then you cross multiply 60 and 100, and 75 and x, so you get
6000=75x
then divide by 75 and you have your percent :)
8 0
2 years ago
Read 2 more answers
Other questions:
  • The capacity of a beamer is 0.1 liter. convert this to milliliters
    6·1 answer
  • myra swims 3/5 of a mile farther than luke.if luke swims 2 and 4/10 miles, how many milrs does myra swim?
    11·1 answer
  • 1 hay ( ) desimas en 1.5<br> 2 hay ( ) veses 12.4
    11·1 answer
  • What set of reflections and rotations would carry rectangle abc do onto itself
    14·1 answer
  • 8(-b-4) what is it help
    8·1 answer
  • Sally shares 36 pencils between 9 friends. How many pencils did each<br> friend receive?
    8·2 answers
  • PLS ANSWER QUICK!!!!!
    14·2 answers
  • <img src="https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%20%7B%7D%5E%7B2%7D%20%20-%205" id="TexFormula1" title="f(x) = x {}^{2} - 5
    8·1 answer
  • PLEASE HELP, I WILL MARK BRANLIEST AND THANKS!!!
    9·1 answer
  • Company A is trying to sell its website to Company B. As part of the sale, Company A claims that the average user of their site
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!