Explanation:
The strength of the gravitational force between two objects depends on two factors, mass and distance. the force of gravity the masses exert on each other. ... increases, the force of gravity decreases. If the distance is doubled, the force of gravity is one-fourth as strong as before.
Answer:
(a) 89 m/s
(b) 11000 N
Explanation:
Note that answers are given to 2 significant figures which is what we have in the values in the question.
(a) Speed is given by the ratio of distance to time. In the question, the time given was the time it took the pulse to travel the length of the cable twice. Thus, the distance travelled is twice the length of the cable.

(b) The tension,
, is given by

where
is the speed,
is the tension and
is the mass per unit length.
Hence,

To determine
, we need to know the mass of the cable. We use the density formula:

where
is the mass and
is the volume.

If the length is denoted by
, then


The density of steel = 8050 kg/m3
The cable is approximately a cylinder with diameter 1.5 cm and length or height of 620 m. Its volume is




The distance between two particles that are <em>in phase</em>
Answers:
a) 
b) 
Explanation:
a) The centripetal acceleration
of an object moving in a uniform circular motion is given by the following equation:
Where:
is the angular velocity of the ball
is the radius of the circular motion, which is equal to the length of the string
Then:
This is the centripetal acceleration of the ball
b) On the other hand, in this circular motion there is a force (centripetal force
) that is directed towards the center and is equal to the tension (
) in the string:

Where
is the mass of the ball
Hence:

This is the tension in the string
Answer:
605447.7066 kgm²/s
Explanation:
= Mass of sphere = 10000 kg
= Mass of rod = 10 kg
r = Radius of sphere = 2 m
l = Length of antenna = 3 m
Angular speed

Angular momentum is given by

Moment of inertia of the satellite is

Moment of antenna of the satellite is

The angular momentum of the system is

The angular momentum of the satellite is 605447.7066 kgm²/s