The difference between delta and harbor is is that delta is the fourth letter of the modern greek alphabet while harbor is a sheltered expanse of water, adjacent to land, in which ships may dock or anchor, especially for loading and unloading.
Answer:
a) K = 0.63 J, b) h = 0.153 m
Explanation:
a) In this exercise we have a physical pendulum since the rod is a material object, the angular velocity is
w² =
where d is the distance from the pivot point to the center of mass and I is the moment of inertia.
The rod is a homogeneous body so its center of mass is at the geometric center of the rod.
d = L / 2
the moment of inertia of the rod is the moment of a rod supported at one end
I = ⅓ m L²
we substitute
w =
w =
w =
w = 4.427 rad / s
an oscillatory system is described by the expression
θ = θ₀ cos (wt + Φ)
the angular velocity is
w = dθ /dt
w = - θ₀ w sin (wt + Ф)
In this exercise, the kinetic energy is requested in the lowest position, in this position the energy is maximum. For this expression to be maximum, the sine function must be equal to ±1
In the exercise it is indicated that at the lowest point the angular velocity is
w = 4.0 rad / s
the kinetic energy is
K = ½ I w²
K = ½ (⅓ m L²) w²
K = 1/6 m L² w²
K = 1/6 0.42 0.75² 4.0²
K = 0.63 J
b) for this part let's use conservation of energy
starting point. Lowest point
Em₀ = K = ½ I w²
final point. Highest point
Em_f = U = m g h
energy is conserved
Em₀ = Em_f
½ I w² = m g h
½ (⅓ m L²) w² = m g h
h = 1/6 L² w² / g
h = 1/6 0.75² 4.0² / 9.8
h = 0.153 m
Answer:
v ’= v + v₀
a system can be another vehicle moving in the opposite direction.
Explanation:
In an inertial reference frame the speed of the vehicle is given by the Galileo transformational
v ’= v - v₀
where v 'is the speed with respect to the mobile system, which moves with constant speed, v is the speed with respect to the fixed system and vo is the speed of the mobile system.
The vehicle's speedometer measures the harvest of a fixed system on earth, in this system v decreases, for a system where v 'increases it has to be a system in which the mobile system moves in the negative direction of the x axis, whereby the transformation ratio is
v ’= v + v₀
Such a system can be another vehicle moving in the opposite direction.
Answer:
Spiders cannot actually propel their bodies through the water as a swimmer does, but they can use objects to get across the water and some can run across the water.
Explanation:
Answer:
103239.89 days
Explanation:
Kepler's third law states that the square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit.
a³ / T² = 7.496 × 10⁻⁶ (a.u.³/days²)
where,
a is the distance of the semi-major axis in a.u
T is the orbit time in days
Converting the mean distance of the new planet to astronomical unit (a.u.)
1 a.u = 9.296 × 10⁷ miles

Substituting the values into Kepler's third law equation;
(days)²

T = 103239.89 days
An estimate time T for the new planet to travel around the sun in an orbit is 103239.89 days