(a) The object moves with uniform velocity from A to B.
(b) The object moves with constant velocity from B to C.
(c) The object moves with increasing velocity from C to D.
<h3>
Velocity of the object from point A to B</h3>
V(A to B) = (6 - 0)/(4 - 0) = 1.5 m/s
<h3>
Velocity of the object from point B to C</h3>
V(B to C) = (6 - 6)/(11 - 4) = 0 m/s
<h3>
Velocity of the object from point C to D</h3>
V(C to D) = (7 - 6)/(12 - 11) = 1 m/s
final velocity = 1 + 1.5 m/s = 2.5 m/s
Thus, we can conclude the following;
The object moves with uniform velocity from A to B.
The object moves with constant velocity from B to C.
The object moves with increasing velocity from C to D.
Learn more about velocity here: brainly.com/question/6504879
#SPJ1
To solve this problem we will apply the concept related to destructive interference (from the principle of superposition). This concept is understood as a superposition of two or more waves of identical or similar frequency that, when interfering, create a new wave pattern of less intensity (amplitude) at a point called a node. Mathematically it can be described as

Where,
d = Path difference
= wavelength
n = Any integer which represent the number of repetition of the spectrum
In this question the distance between the two source will be minimum for the case of minimum path difference, then n= 1



Therefore the minimum distance that should you separate two sources emitting the same waves is 2.5mm
When a police officer is trying to decide if a driver is speeding, what is his point of reference. The speed limit