Answer:
A. It would float with about 80% of the cube below the surface of the water and 20% above the surface.
Explanation:
The choice that best describes what happens to cube of the given density value is that it would float with about 80% of the cube would be below the surface of the water and 20% above the surface.
Density is the mass per unit volume of a substance. The more mass a body has relative to volume, the great it's density. In short, density is directly proportional to mass and inversely related to volume.
The density of water is 1g/mL
If the density of the cube were to be the same with that of water, the substance will just mix up with water .
Here the density is less than that of water.
The density is 0.2g/mL
Therefore, 20% will stay afloat and 80% will be below the surface of the water.
Answer:
Al(NO₃)₃ > KI > HF > CH₃OH
Explanation:
The electrical conductivities of the solutions will depend on the concentration of ions in solution.
Al(NO₃)₃ solution contains 0.1 M of Al³⁺ ions and 0.3 M of NO₃⁻ ions
KI solution contains 0.1 M of K⁺ ions and 0.1 M of I⁻ ions
HF solution contains less than 0.1 M of H⁺ ions and less then 0.1 M of F⁻ ions, because the HF acid will not dissociate completely
CH₃OH practically it does not dissociate, so in the solution will not be electrical conductive (comparative with the other solutions)
The solutions in order of decreasing intensity of the bulb are ranked as following:
Al(NO₃)₃ > KI > HF > CH₃OH
Lajdhskskdhskhdksnsjsndjs
Leftover: approximately 11.73 g of sulfuric acid.
<h3>Explanation</h3>
Which reactant is <em>in excess</em>?
The theoretical yield of water from Al(OH)₃ is lower than that from H₂SO₄. As a result,
- Al(OH)₃ is the limiting reactant.
- H₂SO₄ is in excess.
How many <em>moles</em> of H₂SO₄ is consumed?
Balanced equation:
2 Al(OH)₃ + 3 H₂SO₄ → Al₂(SO₄)₃ + 6 H₂O
Each mole of Al(OH)₃ corresponds to 3/2 moles of H₂SO4. The formula mass of Al(OH)₃ is 78.003 g/mol. There are 15 / 78.003 = 0.19230 moles of Al(OH)₃ in the five grams of Al(OH)₃ available. Al(OH)₃ is in excess, meaning that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
How many <em>grams</em> of H₂SO₄ is consumed?
The molar mass of H₂SO₄ is 98.076 g.mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.076 = 28.289 g.
How many <em>grams</em> of H₂SO₄ is in excess?
40 grams of sulfuric acid H₂SO₄ is available. 28.289 grams is consumed. The remaining 40 - 28.289 = 11.711 g is in excess. That's closest to the first option: 11.73 g of sulfuric acid.