Answer:
a. 16 s b. -1.866 kJ
Explanation:
a. Since the initial rotational speed ω₀= 3313 rev/min = 3313/60 × 2π rad/s = 346.94 rad/s. Its rotational speed becomes ω₁ = 0.75ω₀ in time t = 4 s.
We find it rotational acceleration using α = (ω₁ - ω₀)/t = (0.75ω₀ - ω₀)/t = ω₀(0.75 - 1)/t = -0.25ω₀/t = (-0.25 × 346.94 rad/s)/4 s = -21.68 rad/s².
Since the turntable stops at ω = 0, the time it takes to stop is gotten from
ω = ω₀ + αt and t = (ω - ω₀)/α = (0 - 346.94 rad/s)/-21.68 rad/s² = (-346.94/-21.68) s = 16 s.
So it takes the turntable 16 s to stop.
b. The workdone by the turntable to stop W equals its rotational kinetic energy change.
So, W = 1/2Iω² - 1/2Iω₀² = 1/2 × 0.031 kgm² × 0² - 1/2 × 0.031 kgm² × (346.94 rad/s)² = 0 - 1865.7 J = -1865.7 J = -1.8657 kJ ≅ -1.866 kJ
The working equation would be Vf (final velocity) = Vi
(initial velocity) + a (acceleration) t (time). The given data are the initial
velocity (5.0 m/s), acceleration (-2.5 m/s^2, negative since it is said to
decelerate) and the final velocity (0 m/s, since it will put to a stop). The
time would be 2 seconds.
26.2005 m/s will be the velocity of the apple right when it hits the ground and the initial velocity would be 25.8235 m/s
so Vf=26.2005
and Vi=25.8235
the velocity difference is due to the apple having an initial height of 1 meter
Answer:
A
Explanation:
Yep, your answer is correct. The cart at point A is above all other positions, it has the highest height.