Answer:
Explanation:
Given
mass of person is m
Distance between bridge and river is h
chord has an un-stretched length of 
Let spring constant be k
Person will just stop before hitting the river
Conserve energy i.e. Potential Energy of Person is converted in to elastic energy of chord




Thus 
They are speed and direction.
Answer:
Frequencia = 1.25 Hz
Explanation:
<u>Dados los siguientes datos;</u>
- Velocidad = 50 m/s
- Longitud de onda = 40 metros
Para encontrar la frecuencia de la onda;
Matemáticamente, la velocidad de una onda viene dada por la fórmula;

Haciendo de la frecuencia el tema de la fórmula, tenemos;

Sustituyendo en la fórmula, tenemos;

<em>Frequencia = 1.25 Hz</em>
Answer:
The initial velocity of the snowball was 22.21 m/s
Explanation:
Since the collision is inelastic, only momentum is conserved. And since the snowball and the box move together after the collision, they have the same final velocity.
Let
be the mass of the ball, and
be its initial velocity; let
be the mass of the box, and
be its velocity; let
be the final velocity after the collision, then according to the law of conservation of momentum:
.
From this we solve for
, the initial velocity of the snowball:

now we plug in the numerical values
,
,
, and
to get:


The initial velocity of the snowball is 22.21 m/s.
<em>P.S: we did not take vectors into account because everything is moving in one direction—towards the west.</em>
Answer:
Option C is correct.
The component of acceleration perpendicular to an object’s velocity tells us How the object’s direction changes.
Explanation:
This acceleration is called radial/tangential acceleration. It is the reason why a body moving in circular motion with constant velocity can be said to also be accelerating because its direction is continuously changing. The acceleration is usually directed towards the centre of the circular motion of the body or trying to throw the body off its circular motion path.