One of the major effects of heat transfer is temperature change: heating increases the temperature while cooling decreases it. We assume that there is no phase change and that no work is done on or by the system. Experiments show that the transferred heat depends on three factors—the change in temperature, the mass of the system, and the substance and phase of the substance.
Figure a shows a copper-colored cylinder of mass m and temperature change delta T. The heat Q, shown as a wavy rightward horizontal arrow, is transferred to the cylinder from the left. To the right of this image is a similar image, except that the heat transferred Q prime is twice the heat Q. The temperature change of this second cylinder, which is also labeled m, is two delta T. This cylinder is surrounded by small black wavy lines radiating outward. Figure b shows the same two cylinders as in Figure a. The left cylinder is labeled m and delta T and has a wavy heat arrow pointing at it from the left that is labeled Q. The right cylinder is labeled two m and delta T and has a wavy heat arrow pointing to it from the left labeled Q prime equals two Q. Figure c shows the same copper cylinder of mass m and with temperature change delta T, with heat Q being transferred to it. To the right of this cylinder, Q prime equals ten point eight times Q is being transferred to another cylinder filled with water whose mass and change in temperature are the same as that of the copper cylinder.
If the ration supplementary angle is 11:7,find the measure of the larger angle larger angle?
Multiplying the ideal gas law constant
Answer:
A. 100 Watts
B. 12 Watts
C. the first bulb
Explanation:
A. The formula for power is Work done/time
6000J/60seconds = 100J/s or 100W
B. Another formula for power is Current * Voltage
0.05*240 = 12W
Answer: True
Explanation:
It should be noted that when refrigerant is added in vapor form to the operating refrigeration system, then the addition of the refrigerant should be to the low-pressure side of the refrigeration system.
Furthermore, when system pressures are lower than the pressure in the refrigerant tank as stated in the question, then the refrigerant can be added to both the high and low pressure sides of the system.
Therefore, the correct option is true.