Answer: Then the longer it is, the more it protects against degradation. Proteins that are needed over a long period of time come from a long tailed mRNA.
Explanation:
Messenger RNA (mRNA) is the ribonucleic acid that transfers the genetic code from the DNA of the cell nucleus to a ribosome in the cytoplasm. It determines the order in which the amino acids in a protein will bind and acts as a template or pattern for the synthesis of that protein.
Messenger RNA is synthesized in the cell nucleus in eukaryotes from the process called DNA transcription.
<u> In most cases, once this messenger RNA has been synthesized, it must be matured (RNA maturation)</u>. This involves the removal of intercalary sequences called non-coding introns from the protein to be synthesized. Then, the addition of a structure called CAP to the 5' end, which is a modified guanine nucleotide needed for the normal process of DNA transplantation and maintaining its stability. This is critical for proper recognition and access of the ribosome. Also, polyadenylation which is the addition of the sequence called Poly-A to the 3' end. The Poly-A sequence is made up of several adenine molecules and is located at about 20-30 bp towards the tail (AAPAA sequence) or polyadenylation signal, which protects the end of the mRNA. The polyadenylation helps to increase the period of the message, so that the transcription lasts longer in the cell and therefore more protein is translated and produced.
This mature messenger RNA is transferred to the cell's cytoplasm, in the case of eukaryotes, through pores in the nuclear membrane. The messenger RNA in the cytoplasm is coupled to the ribosomes, which are the machinery in charge of protein synthesis.<u> However, after a certain amount of time the mRNA is degraded</u> into its component nucleotides, usually with the help of ribonucleases. So, an mRNA with a short tail will have a shorter lifespan.
Then, proteins that are needed over a long period of time come from a long tailed mRNA. And proteins that are briefly nedded come from a short tailed mRNA. This is because, as explained, the Poly-A tail serves to protect the mRNA molecule from degradation. So, then the longer it is, the more it protects against degradation.
3. Heart (The heart pumps oxygen thro our entire body, continuously)
4. Blood Vessels (In humans, nutrients are carried thro blood vessels)
I hope that helps!
In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. This process occurs in all living organisms and is the basis for biological inheritance. DNA is made up of a double helix of two complementary strands. During replication, these strands are separated. Each strand of the original DNA molecule then serves as a template for the production of its counterpart, a process referred to as semiconservative replication. Cellular proofreading and error-checking mechanisms ensure near perfect fidelity for DNA replication.[1][2]
In a cell, DNA replication begins at specific locations, or origins of replication, in the genome.[3] Unwinding of DNA at the origin and synthesis of new strands results in replication forks growing bi-directionally from the origin. A number of proteins are associated with the replication fork to help in the initiation and continuation of DNA synthesis. Most prominently, DNA polymerasesynthesizes the new strands by adding nucleotides that complement each (template) strand. DNA replication occurs during the S-stage of interphase.
DNA replication can also be performed in vitro (artificially, outside a cell). DNA polymerases isolated from cells and artificial DNA primers can be used to initiate DNA synthesis at known sequences in a template DNA molecule. The polymerase chain reaction (PCR), a common laboratory technique, cyclically applies such artificial synthesis to amplify a specific target DNA fragment from a pool of DNA.