Its chemical formula H2O, indicates that each of its molecules contains one oxygen and two hydrogen atoms, connected by covalent bonds. The hydrogen atoms are attached to the oxygen atom at an angle of 104.45°. "Water" is the name of the liquid state of H2O at standard conditions for temperature and pressure.
Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.
Answer:
Metallic structure
Explanation:
They have a high melting point due to the strong forces of attraction between the positive ions (cations) and the delocalised electrons. Moreover, they conduct electricity due to the sea of delocalised electrons.
<em>[Extra: It could be an ionic compound since they also have a high melting point, however they only conduct electricity in liquid or aqeouus state.]</em>
Gravity, its what holds the whole universe together
Molar mass Ra(OH)2 = 260 g/mol
<span>Moles = 987 g / 260 = 3.80 moles</span>