Answer:
a) 88.48%
b) 0.05625 mol
Explanation:
2CH₃CH₂OH(l) → CH₃CH₂OCH₂CH₃(l) + H₂O(g) Reaction 1
CH₃CH₂OH(l) → CH₂═CH₂(g) + H₂O(g) Reaction 2
a) CH₃CH₂OH = 46.0684 g/mol
CH₃CH₂OCH₂CH₃ = 74.12 g/mol
1 mol CH₃CH₂OH ______ 46.0684 g
x ______ 50.0 g
x = 1.085 mol CH₃CH₂OH
1 mol CH₃CH₂OCH₂CH₃ ______ 74.12 g g
y ______ 35.9 g
y = 0.48 mol CH₃CH₂OCH₂CH₃
100% yield _____ 0.5425 mol CH₃CH₂OCH₂CH₃
w _____ 0.48 mol CH₃CH₂OCH₂CH₃
w = 88.48%
b) Only 0.96 mol of ethanol reacted to form diethyl ether. This means that 0.125 mol of ethanol did not react. 45% of 0.125 mol reacted to form ethylene. Therefore, 0.05625 mol of ethanol reacted by the side reaction (reaction 2). Since 1 mol of ethanol leads to 1 mol of ethylene, 0.05625 mol of ethanol produces 0.05625 mol of ethylene.
1.8 L
<h3>
Explanation</h3>
The volume of a gas, V, is inversely proportional to the pressure on it, P. That is:
V₁ · T₁ = V₂ · T₂.
Rearranging gives:
V₂ = V₁ · T₁ / T₂ = 4.2 × (101 / 235) = 1.8 L
The first step in the two-step process of making a solution is the breakdown of the solute source into Atomic particles
for a solution to break the solute must be dissociated and break into the atomic particles
so correct option is D
hope it helps
The magnitude of a star as it would appear to a hypothetical observer at a distance of 10 parsecs or 32.6 light-years. This rates how visible celestial bodies are when they are all viewed from the same distance. Luminosity: The brightness of a star in comparison with that of the sun.
Answer:
D) the critical point
Explanation:
Point A is the critical point in phase diagram. This is the highest temperature and pressure at which a pure material can exist in vapor/liquid equilibrium. Pretty cool!