Say this: "after x=2, g(x) exceeds f(x). Note that for x=3, g(3) > f(3). Check that out.
Answer:
radical form, they occur as two conjugates.
That is,
The conjugate of (a + √b) is (a - √b) and vice versa.
To show that the given conjugates come from a polynomial, we should create the polynomial from the given factors.
So if 44=8 and 33=x, solve for x.
The problem would look like this : 44mm = 8m
33mm = x
You would cross multiply giving you this : 44x = 264
Then divide 264 by 44 to isolate x, then you should get this : x = 6
6m will be your answer.
Answer:
a
Step-by-step explanation:
Recall that the "point-slope" form of a linear equation may be expressed as
y = mx + b,
where m is the gradient.
If m is negative, the gradient is negative.
If m is positive, the gradient is positive.
In our case, if we consider option A,
x + 3y = -2 (rearranging)
3y = -x -2
y = (-1/3) x - (2/3)
if we compare this to the general equation at the top, we can see that
gradient, = m = (-1/3) which is negative.
hence option a has a negative gradient.
Given:
μ = $3120, population mean
σ = $677, population standard deviation.
The population is normally distributed.
n = 20, sample size.
At the 95% confidence level, the confidence interval is
![( \mu - 1.96\frac{\sigma}{ \sqrt{n} } ,\, \mu + 1.96\frac{\sigma}{ \sqrt{n} })](https://tex.z-dn.net/?f=%28%20%5Cmu%20-%201.96%5Cfrac%7B%5Csigma%7D%7B%20%5Csqrt%7Bn%7D%20%7D%20%20%2C%5C%2C%20%5Cmu%20%2B%201.96%5Cfrac%7B%5Csigma%7D%7B%20%5Csqrt%7Bn%7D%20%7D%29%20)
1.96(σ/√n) = 1.96(677/√20) = 296.71
Th confidence interval for the mean is
($2823.29, $3416.71)
Answer: ($2823.29, $3416.71)