The safety feature aimed at keeping nuclear radiation contained is steel-reinforced concrete.
<h3>What is nuclear power plant?</h3>
A nuclear power plant is a building with reactors that contain controlled nuclear reactions to produce energy.
Nuclear power plants are able to generate warm water by using atomic properties of matter (i.e.,m the process of nuclear fission), which is in turn converted into steam to move turbines.
The walls of nuclear power reactors are composed of steel-reinforced concrete in order to avoid radiation release.
In conclusion, the safety standard property that maintains nuclear radiation contained is steel-reinforced concrete.
Learn more about nuclear power plants here:
brainly.com/question/24295936
#SPJ1
Answer:
A) [H3PO4] will increase, [KH2PO4] will decrease, and pH will slightly decrease.
Explanation:
A buffer is a solution which resists changes to its pH when a small amount of acid or base is added to it.
Buffers consist of a weak acid (HA) and its conjugate base (A–) or a weak base and its conjugate acid. Weak acids and bases do not completely dissociate in water, and instead exist in solution as an equilibrium of dissociated and undissociated species. When a small quantity of a strong acid is added to a buffer solution, the conjugate base, A-, reacts with the hydrogen ions from the added acid to form the weak acid and a salt thereby removing the extra hydrogen ions from the solution and keeping the pH of the solution fairly constant. On the other hand, if a small quantity of a strong base is added to the buffer solution, the weak acid dissociates further to release hydrogen ions which then react with the hydroxide ions of the added base to form water and the conjugate base.
For example, if a small amount of strong acid is added to a buffer solution that is 0.700 M H3PO4 and 0.700 M KH2PO4, the following reaction is obtained:
KH₂PO₄ + H+ ----> K+ + H₃PO₄
Therefore, [H₃PO₄] will increase, [KH₂PO₄] will decrease, and pH will slightly decrease.:
Answer:
a. Sn or Si ⇒ Sn
b. Br or Ga ⇒ Ga
c. Sn or Bi ⇒ similar in size
d. Se or Sn ⇒ Sn
Explanation:
The larger atom has a larger atomic radius. We have to consider how varies the atomic radius for chemical elements in the Periodic Table. In a group (column), the atomic radius increases from top to bottom while in a period (file), it increases from right to left.
a. Sn or Si ⇒ Sn
They are in the <u>same group</u>. Sn is on the top, so it has a larger atomic radius.
b. Br or Ga ⇒ Ga
They are in the <u>same period</u>. Ga is located at the left so it has a larger atomic radius.
c. Sn or Bi ⇒ similar
They are not in the same group neither the same period. Bi is located more at the bottom, so it would be larger than Sn, but Bi is also at the right side, so it would be smaller than Bi. Thus, they have comparable sizes.
d. Se or Sn⇒ Sn
They are not in the same group neither the same period. Se is located at the top and right side compared to Sn, so Sn is the larger atom.
I think ionic hope it helps
Despite its appearance, air has a ‘thickness’ so when the sun is high in the sky the light travels through the air on a very much shorter path than when it is low on the horizon.
Imagine that air water and you are below the surface, the light from an overhead sun will be quite sharp and bright, but if lower in the sky it will have to travel through much more water to reach you, so will look less bright and sharp. It ma not seem the same, but the atmosphere is just like very thin water, and a low lying sun will be drastically reduced in strength, so all you will see is a sun with a shift to the red end of the spectrum as all the actinic part will be filtered away by that thicker atmosphere.