It would still have oceans but no atmospheric water in Earth if no icy debris had arrived.
A. It would still have oceans but no atmospheric water.
<u>Explanation:</u>
Seas characterize our home planet, covering most of the Earth's surface and driving the water cycle that commands our territory and climate. However, progressively significant still, the narrative of our seas wraps our home in a far bigger setting that ventures profound into the universe and spots us in a rich group of sea universes that range our nearby planetary group and past.
It would in any case have seas yet no air water on Earth if no frigid flotsam and jetsam had shown up. For a long time, it was accepted that the frosty moons were only that - solidified husks, strong to their center. However, lately that thought has steadily been supplanted by a fresher, additionally energizing worldview.
Answer:
A I think
Explanation:
Because plasma have ions and B is neutralized with two ions
Answer:
V = 4/3 * 3.1416 * (37x10-10)3
V = 2.12x10-25 cm3
d = m/V
d = 1.67x10-24 / 2.12x10-25 = 7.87 g/cm3
The difference in temperature, let's convert F to ºC:
ºC = -80-32/1.8 = -62.22 ºC
dT = -92.6 + 62.2 = -30.4 ºC
First, we convert the moles of each substance into the concentration using the volume of the reactor.
[SO₃] = 0.425/1.5 = 0.283 M
[SO₂] = 0.208 / 1.5 = 0.139 M
[O₂] = 0.208/1.5 = 0.139 M
The equilibrium constant is calculated by:
Kc = [SO₃]² / [O₂][SO₂]²
Kc = (0.283)²/(0.139)(0.139)²
Kc = 29.8 = 2.98 x 10¹
The answer is C
Answer:
Phosphorus
Sulphur
And chlorine are non metals when bonded covalently gain electronic configuration of argon
Like PCl3
SO2 and HCl
Explanation: