The balanced equation for the above reaction is as follows;
Mg + 2HCl ---> MgCl₂ + H₂
stoichiometry of HCl to MgCl₂ is 2:1
we have been told that Mg is in excess therefore HCl is the limiting reactant
number of HCl moles reacted - 0.100 mol/L x 0.0256 L = 0.00256 mol
according to molar ratio, number of MgCl₂ moles formed - 0.00256/2
Therefore number of MgCl₂ moles formed - 0.00128 mol
mass of MgCl formed - 0.00128 mol x 95.20 g/mol = 0.122 g
Answer:
Explanation:
A 12.48 g sample of an unknown metal, heated to 99.0 °C was then plunged into 50.0 mL of 25.0 °C water. The temperature of the water rose to 28.1 Go to calculating final temperature when mixing two samples of water ... Problem #1: A 610. g piece of copper tubing is heated to 95.3 °C and placed in an ... The two rings are heated to 65.4 °C and dropped into 12.4 mL of water at 22.3 °C. ... Problem #4: A 5.00 g sample of aluminum (specific heat capacity = 0.89 J g¯1
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>