Answer:
covalent bonds
Explanation:
Nitrogen atoms will form three covalent bonds (also called triple covalent) between two atoms of nitrogen because each nitrogen atom needs three electrons to fill its outermost shell.
(if it is still confusing i have another way of explaining so jus let me know :)
Answer:Because of the rapid changes in altitude and temperature along a mountain slope, multiple ecological zones are “stacked” upon one another sometimes ranging from dense tropical jungles to glacial ice within a few kilometres
Explanation:
Explanation:
Starting moles of ethanol acid = 0.020 mol
At the equilibrium 50 % of the ethanol acid molecules reacted
∴ Moles of ethanol acid reacted = 0.020 mol * 50 %/100 %
= 0.010 mol
Moles of ethanol acid remain = 0.020 mol + 0.010 mol = 0.010 mol
Moles of the product
gas formed are calculated as
0.010 mol CH3COOH * 1 mol
/ 2 mol CH3COOH
= 0.005 mol 
Therefore at the equilibrium total moles of gas present in the vessel are 0.010 mol CH3COOH and 0.005 mol 
That is total gas moles at equilibrium = 0.010 mol + 0.005 mol = 0.015 mol
Now Calculate the pressure :
0.020 mol gas has pressure of 0.74 atm therefore at the same condition what will be the pressure exerted by 0.015 mol gas
P1/n1 = P2/n2
P2 = P1*n2 / n1
= 0.74 atm * 0.015 mol / 0.020 mol
= 0.555 atm
Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer
1,3-butadiene is the simplest conjugated diene and undergoes 1,4 addition reaction in acidic environment.
Chemical reaction: CH₂=CH-CH=CH₂ + H₂O → CH₃-CH=CH-CH₂-OH.
CH₂=CH-CH=CH₂ - 1,3-butadiene.
CH₃-CH=CH-CH₂-OH - 2-buten-1-ol.
Diene<span> or </span>diolefin<span> is a </span>hydrocarbon<span> that has two </span>carbon double bonds<span>.</span>