The pilot might be correct (I think), because, if the gravity of the planet is strong, then the planet’s gravity will pull the spaceship into its orbit, so the engines don’t need to be on for the ship to get pushed toward the planet.
<em>500 sec</em>
<em>8 min 20 sec</em>
<em>Hi there !</em>
<em />
<em>8 m ................ 1 s </em>
<em>4000 m ........ x s</em>
<em>x = 4000m×1s/8m = 500 sec = 8 min 20 sec</em>
<em />
<em>Good luck ! </em>
Answer:
1.97 * 10^8 m/s
Explanation:
Given that:
n = 1.52
Recall : speed of light (c) = 3 * 10^8 m/s
Speed (v) of light in glass:
v = speed of light / n
v = (3 * 10^8) / 1.52
v = 1.9736 * 10^8
Hence, speed of light in glass :
v = 1.97 * 10^8 m/s
Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s
Electrical energy is your answer.