Answer:
t = 23.9nS
Explanation:
given :
Area A= 10 cm by 2 cm => 2 x 10^-2m x 10 x 10^-2m
distance d= 1mm=> 0.001
resistor R= 975 ohm
Capacitance can be calculated through the following formula,
C = (ε0 x A )/d
C = (8.85 x 10^-12 x (2 x 10^-2 x 10 x 10^-2))/0.001
C = 17.7 x 10^-12 (pico 'p' = 10^-12)
C = 17.7pF
the voltage between two plates is related to time, There we use the following formula of the final voltage
Vc = Vx (1-e^-(t/CR))
75 = 100 x (1-e^-(t/CR))
75/100 = (1-e^-(t/CR))
.75 = (1-e^-(t/CR))
.75 -1 = -e^-(t/CR)
-0.25 = -e^-(t/CR) --->(cancelling out the negative sign)
e^-(t/CR) = 0.25
in order to remove the exponent, take logs on both sides
-t/CR = ln (0.25)
t/CR = -ln(0.25)
t = -CR x ln (0.25)
t = -(17.7 x 10^-12 x 975) x (-1.38629)
t = 23.9 x
t = 23.9ns
Thus, it took 23.9ns for the potential difference between the deflection plates to reach 75 volts
Newton's Second law of motion:
Force = (mass) x (acceleration)
Force = (15kg) x (8m/s²) = 120 kg-m/s² = 120 newtons
W=20 e(-kt)
A. Rearranging gives k= -(ln(w/20)/t
Substituting w= 10 and solving gives k=0.014
B. Using W=20e(-kt). After 0 hours, W=20. After 24 hours, W=14.29g. After 1 week (24x7=168h) W=1.9g
C. Rearranging gives t=-(ln(10/20)/k. Substituting w=1 and solving gives t=214 hours.
D. Differentiating gives dW/ dt = -20ke(-kt). Solving for t=100 gives dW/dt = 0.07g/h. Solving for t=1000 gives 0.0000002g/h
E. dW/dt = -20ke(-kt). But W=20e(-kt) so dW/dt = -kW
I think metal, steel and copper.