Answer:
Time take to fill the standing wave to the entire length of the string is 1.3 sec.
Explanation:
Given :
The length of the one end
, frequency of the wave
= 2.3 Hz, wavelength of the wave λ = 1 m.
Standing wave is the example of the transverse wave, standing wave doesn't transfer energy in a medium.
We know,
∴
λ
Where
speed of the standing wave.
also, ∴ 
where
time take to fill entire length of the string.
Compare above both equation,
⇒
sec

Therefore, the time taken to fill entire length 0f the string is 1.3 sec.
Answer: Given:
Initial velocity= 36km/h=36x5/18=10m/s
Final velocity =54km/h=54x5/18=15m/s
Time =10sec
Acceleration = v-u/ t
=15-10/10=5/10=1/2=0.5 m/s2
Distance =s=?
From second equation of motion:
S=ut +1/2 at^2
=10*10+1/2*0.5*10*10
=100+25
=125m
So distance travelled 125m
Hope it helps you
Maybe you can split up the questions. I will try to answer your first question.
1. In an elastic collision, momentum is conserved. The momentum before the collision is equal to the momentum after the collision. This is a consequence of Newton's 3rd law. (Action = Reaction)
2. Momentum: p = m₁v₁ + m₂v₂
m₁ mass of ball A
v₁ velocity of ball A
m₂ mass of ball B
v₂ velocity of ball B
Momentum before the collision:
p = 2*9 + 3*(-6) = 18 - 18 = 0
Momentum after the collision:
p = 2*(-9) + 3*6 = -18 + 18 = 0
3: mv + m(-v) = m(-v) + m(v)
the velocities would reverse.
4.This question is not factual since the energy of an elastic collision must also be conserved. The final velocities should be: v₁ = -1 m/s and v₂ = 5 m/s. That said assuming the given velocities were correct:
before collision
p = 10*3 + 5*(-3) = 30 - 15 = 15
after collision:
p = 10*(-2) + 5 * v₂ = 15
v₂ = 7
5.You figure out.
It involves electrons.
The cathode is the electrode where electron deficient ions move to.
While the anode is electrode where electron excess ions move to.
So the relationship between Cathode and Anode involves electrons.
C.
Answer:
W = 145.8 [N]
Explanation:
To solve this problem we must remember that weight is defined as the product of mass by gravity, in this case lunar gravity.
W = m*g
where:
m = mass = 90 [kg]
g = gravity acceleration = 1.62 [kg/m²]
W = 90*1.62
W = 145.8 [N]