Answer:it takes approximately 148.8 seconds to achieve. The average person in a free-fall will hit the ground going at 9.66 m/s from the top of the Empire State Building.
Explanation:
200 Hz = 200 cycles per sec
<span>1 cycle, the period = 1/200 = 0.005 seconds, or 5 milli seconds.</span>
The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:

We can apply the first Newton's law in x and y-direction.
If we do a free body diagram of the system we will have:
x-direction
All the forces acting in this direction are:
(1)
Where:
- T(1) is the tension due to the rope 1
- T(2) is the tension due to the rope 2
Here we just conclude that T(1) = T(2)
y-direction
The forces in this direction are:
(2)
Here W is the weight of the steel beam.
We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.
Knowing that T(1) = T(2) and W = mg, we have:



T(1) must be equal to 5479 N, so we have:


Therefore, the maximum angle allowed is θ = 37.01°.
You can learn more about tension here:
brainly.com/question/12797227
I hope it helps you!
Answer:
0.28802
2.57162 W
14.28 W
53.55 W
6.07142 W
Explanation:
R = 280Ω
L = 100 mH
C = 0.800 μF
V = 50 V
ω = 10500rad/s
For RLC circuit impedance is given by

Power factor is given by

The power factor is 0.28802
The average power to the circuit is given by

The average power to the circuit is 2.57162 W
Power to resistor

Power to resistor is 14.28 W
Power to inductor

Power to the inductor is 53.55 W
Power to the capacitor

The power to the capacitor is 6.07142 W