Answer: a=-2.4525 m/s^2
d=s=190.3 m
Explanation:The only force that is stopping the car and causing deceleration is the frictional force Fr
Fr = 25% of weight
W=mg
W=1750*9.81
W=17167.5
Hence

Frictional force is negative as it acts in opposite direction
According to newton second law of motion
F=ma
hence


given
u= 110 km/h
u=110*1000/3600
u=30.55 m/s
to get t we know that final velocity v=0

Answer:
Acceleration will be 
Explanation:
We have given initial speed of the car is 70 km/hr
We know that 1 km = 1000 m
And 1 hour = 3600 sec
So 
It is given that car stops in 12 sec
So final speed of the car v = 0 m/sec
Time t = 12 sec
From first equation of motion v = u+at
So 
( negative sign indicates that speed of the car will constantly decrease )
Answer:
If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface.
Explanation:
Option A is incorrect because, given this case, it is easier to calculate the field.
Option B is incorrect because, in a situation where the surface is placed inside a uniform field, option B is violated
Option C is also incorrect because it is possible to be a field from outside charges, but there will be an absence of net flux through the surface from these.
Hence, option D is the correct answer. "If a Gaussian surface is completely inside an electrostatic conductor, the electric field must always be zero at all points on that surface."
Answer:
Emissions from power plants that burn fossil fuels increase atmospheric carbon dioxide, which is absorbed by the ocean.
Explanation:
Fossil fuels are burnt in power plants in order to produce energy. These fossil fuels contain carbon. Combustion of these fossil fuels emits oxides of carbon into the atmosphere. The oxides of carbon are carbon II oxide and carbon dioxide.
Carbon dioxide can be absorbed by the ocean to form carbonic acid according to the reaction equation;
CO2(aq) + H2O(l) ------> H2CO3(aq)
This is an anthropogenic activity which increases ocean acidification.
Answer:
=1419.19 meters.
Explanation:
The time it takes for the shell to drop to the tanker from the height, H =1/2gt²
610m=1/2×9.8×t²
t²=(610m×2)/9.8m/s²
t²=124.49s²
t=11.16 s
Therefore, it takes 11.16 seconds for a free fall from a height of 610m
Range= Initial velocity×time taken to hit the tanker.
R=v₁t
Lets change 300 mph to kph.
=300×1.60934 =482.802 kph
Relative velocity=482.802 kph-25 kph
=457.802 kph
Lets change 11.16 seconds to hours.
=11.16/(3600)
=0.0031 hours.
R=v₁t
=457.802 kph × 0.0031 hours.
=1.41918 km
=1.41919 km × 1000m/km
=1419.19 meters.