Answer:
72,300 years.
Explanation:
- Initial mass of this sample: 504 grams;
- Current mass of this sample: 63 grams.
What's the ratio between the current and the initial mass of this sample? In other words, what fraction of the initial sample hasn't yet decayed?
.
The value of this fraction starts at 1 decreases to 1/2 of its initial value after every half-life. How many times shall 1/2 be multiplied to 1 before reaching 1/8?
. It takes three half-lives or
years to reach that value.
In certain questions the denominator of the fraction is large. It might not even be an integer power of 2. The base-x logarithm function on calculators could help. Evaluate
to find the number of half-lives required. In case the base-x logarithm function isn't available, but the natural logarithm function
is, apply the following expression (derived from the base-changing formula) to get the same result:
.
False this is incorrect because Jupiter is 1,300 the volume of earth.
The cliff is 2042 ft away.
We know that the speed of sound in air is directly proportional to the absolute temperature.
First convert the Fahrenheit temperature to Celsius;
°C = 5/9(44.5 - 32)
°C = 6.9 °C
Applying the formula;
V1/V2 = √T1/T2
Where; V1 = velocity of sound in air at 0°C
V2 = Velocity of sound in air at 6.9 °C
1087/V2 = √273/279.9
V2= 1101 ft/s
Given that; V = 2s/t
Where s is the distance of the cliff
t is the time taken
1101 ft/s = 2s/3.71 s
s = 1101 ft/s × 3.71 s/2
s = 2042 ft
Learn more:brainly.com/question/15381147
Answer:
5000°A
Explanation:
If it is right answer so please mark me as brainleist anwer as ur wish
Pushing, pulling is the answer