Answer : The radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Explanation :
As we are given that the Na⁺ radius is 56.4% of the Cl⁻ radius.
Let us assume that the radius of Cl⁻ be, (x) pm
So, the radius of Na⁺ = 
In the crystal structure of NaCl, 2 Cl⁻ ions present at the corner and 1 Na⁺ ion present at the edge of lattice.
Thus, the edge length is equal to the sum of 2 radius of Cl⁻ ion and 2 radius of Na⁺ ion.
Given:
Distance between Na⁺ nuclei = 566 pm
Thus, the relation will be:





The radius of Cl⁻ ion = (x) pm = 181 pm
The radius of Na⁺ ion = (0.564x) pm = (0.564 × 181) pm =102.084 pm ≈ 102 pm
Thus, the radii of the two ions Cl⁻ ion and Na⁺ ion is, 181 and 102 pm respectively.
Answer : The concentration of NaOH is, 0.336 M
Explanation:
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Thus, the concentration of NaOH is, 0.336 M
Explanation:
Since mole ratio of O2 : NH3 = 7 : 4,
Volume of NH3 = 50dm³ * 4/7 = 28.57dm³.
Answer:
See explanation
Explanation:
In looking at molecules to determine whether they are polar or not we have to look at two things basically;
i) presence of polar bonds
ii) geometry of the molecule
Now, we know that CCI2F2 is a tetrahedral molecule, but the molecule is not symmetrical. It has four polar bonds that are not all the same hence the molecule is polar.
In an electric field, polar molecules orient themselves in such a way that the positive ends of the molecule are being attracted to the negative plate while the negative ends of the molecules are attracted to the positive plate.
So the positive ends of CCI2F2 are oriented towards the negative plate of the field while the negative ends of CCI2F2 are oriented towards the positive ends of the field.
Answer:
Volume of liquid = 28.7 mL
Explanation:
Given data;
Density of solid = 3.57 g/ml
Mass of solid = 19.5 g
Volume of water = 23.2 mL
Total volume when solid is dropped into graduated cylinder= ?
Solution:
Density = mass/ volume
v = m/d
v = 19.5 g/ 3.57 g/ml
v = 5.5 mL
Volume of liquid = volume of water + volume of solid
Volume of liquid = 23.2 mL + 5.5 mL
Volume of liquid = 28.7 mL