In exothermic/exergonic reactions, reactants have greater energy(Gibbs-Free Energy) than the products. This energy determines how much mechanical work a system can do
Answer:
0.028 M.
Explanation:
NOTE: This question is a chemistry question. However, the answer to the question can be obtained as shown below:
We'll begin by calculating the number of mole in 2.52 g of oxalic acid, C₂H₂O₄. This can be obtained as follow:
Mass of C₂H₂O₄ = 2.52 g
Molar mass of C₂H₂O₄ = (2×12) + (2×1) + (4×16)
= 24 + 2 + 64
= 90 g/mol
Mole of C₂H₂O₄ =?
Mole = mass / molar mass
Mole of C₂H₂O₄ = 2.52 / 90
Mole of C₂H₂O₄ = 0.028 mole
Finally, we shall determine the molarity of the solution. This can be obtained as follow:
Mole of C₂H₂O₄ = 0.028 mole
Volume = 1 L
Molarity =?
Molarity = mole / Volume
Molarity = 0.028 / 1
Molarity = 0.028 M
Therefore, the molarity of the solution is 0.028 M.
Answer:
As you move across a period, the atomic mass increases because the atomic number also increases
Explanation:
When the atomic number increases, this means that there are more protons and neutrons that add to the atomic mass of an atom.
Answer:
a) Acceleration is zero
, c) Speed is cero
Explanation:
a) the equation that governs the simple harmonic motion is
x = A cos (wt +φφ)
Where A is the amplitude of the movement, w is the angular velocity and φ the initial phase determined by the initial condition
Body acceleration is
a = d²x / dt²
Let's look for the derivatives
dx / dt = - A w sin (wt + φ)
a = d²x / dt² = - A w² cos (wt + φ)
In the instant when it is not stretched x = 0
As the spring is released at maximum elongation, φ = 0
0 = A cos wt
Cos wt = 0 wt = π / 2
Acceleration is valid for this angle
a = -A w² cos π/2 = 0
Acceleration is zero
b)
c) When the spring is compressed x = A
Speed is
v = dx / dt
v = - A w sin wt
We look for time
A = A cos wt
cos wt = 1 wt = 0, π
For this time the speedy vouchers
v = -A w sin 0 = 0
Speed is cero