P = V^2 / R.
So, 3.3^2 / 0.025 = 435.6W.
Note, you can get the power equation from:
P = V*I. Also, I = V/R.
Substituting V/R in for I in the 1st equation, you get P = V^2 / R.
It had a gravitational force that acts so that it pulls Earth in an orbital, which explains temperature variations throughout the years.
The frictional force is 39.4 N
Explanation:
We can solve this problem by applying Newton's 2nd law of motion: in fact, the net force acting on the block is equal to the product between its mass and its acceleration. So we can write
where
is the net force
m is the mass
a is the acceleration
Here we know that the box is moving with constant velocity, so its acceleration is zero:
This means that the net force is also zero:
The net force on the block is given by the applied force, forward, and the frictional force, backward:
where
is the applied force
is the frictional force
Therefore, solving for ,
Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
Answer:
The new current in the straight wire is 4.98 A
Explanation:
Given;
initial magnetic force on the wire, F₁ = 0.017 N
initial current flowing on the straight wire, I₁ = 1.1 A
When the current in the wire is changed,
new magnetic force on the wire, F₂ = 0.077 N
the new current in the wire, I₂ = ?
Applying equation of magnetic force on conductor;
F₁ = I₁BLsinθ
F₂ = I₂BLsinθ
BLsinθ = F₁/I₁ = F₂/I₂
I₂ = (F₂I₁)/F₁
I₂ = (0.077 x 1.1) / 0.017
I₂ = 4.98 A
Therefore, the new current in the straight wire is 4.98 A
Answer:
Absorption, in wave motion, the transfer of the energy of a wave to matter as the wave passes through it. The energy of an acoustic, electromagnetic, or other wave is proportional to the square of its amplitude—i.e., the maximum displacement or movement of a point on the wave; and, as the wave passes through a substance, its amplitude steadily decreases.
Explanation: