100/2.5 because power=energy/time
Answer:
Climate is determined by averaging the seasonal weather conditions for a region over a period of many ______ years
Choose the correct association for: dense bushes rain forest or jungle
Choose the correct association for: plains savanna
Answer: 113.75
Explanation:
You know
acceleration = a = 3.5 m/s²
time = t = 5 seconds
initial velocity = u = 14 m/s
Unknown is distance = s = ?
Use equation: s = ut +
at²
Substitute all the known values inside the equation:
s = (14*5) + 0.5 * 3.5 * 5²
s = 70 + 43.75 = 113.75 m
The car travels 113.75 metres.
Answer:
1. 
2. 
3. 
Explanation:
Given:
- mass of slinky,

- length of slinky,

- amplitude of wave pulse,

- time taken by the wave pulse to travel down the length,

- frequency of wave pulse,

1.



2.
<em>Now, we find the linear mass density of the slinky.</em>


We have the relation involving the tension force as:




3.
We have the relation for wavelength as:



Other terrestrial planets have more extreme temperatures mainly because of their atmospheres
Explanation:
for example the atmosphere of Venus is composed mainly of carbon dioxide, this carbon dioxide traps the heat or energy from the sun and makes the planet have higher temperatures. where on mars the atmosphere is very thin so it takes in lots of heat and doesn't keep it in very well so it gets very hot and very cold