Answer:
Impedance, Z = 107 ohms
Explanation:
It is given that,
Resistance, R = 100 ohms
Inductance, 
Capacitance, 
Frequency, f = 60 Hz
Voltage, V = 120 V
The impedance of the circuit is given by :
...........(1)
Where
is the capacitive reactance, 

is the inductive reactance, 

So, equation (1) becomes :

Z = 106.26 ohms
or
Z = 107 ohms
So, the impedance of the circuit is 107 ohms. Hence, this is the required solution.
When the balanced force is applied on the ball It will roll away from the force.
<u>Explanation:</u>
- A ball lies on the floor in rest. If the balanced force is applied to
the ball, the force will push away.
- The forces would include gravity and the forces of air particles entering the ball from almost all directions.
- And the ground is exercising the force and shifting away from the impact.
<u></u>
<u />
Answer:
I think it might be A
Explanation:
the reason I think this answer is because the intensity is 50%.
Answer:
0.694 m
Explanation:
Case 1 : When only mass of 2.82 kg is hanged from spring
m = mass hanged from the spring = 2.82 kg
x = stretch caused in the spring = 0.331 m
k = spring constant
Using equilibrium of force in vertical direction
Spring force = weight of the mass
k x = m g
k (0.331) = (2.82) (9.8)
k = 83.5 N/m
Case 2 : When both masses are hanged from spring
m = mass hanged from the spring = 3.09 + 2.82 = 5.91 kg
x = stretch caused in the spring = ?
k = spring constant = 83.5 N/m
Using equilibrium of force in vertical direction
Spring force = weight of the mass
k x = m g
(83.5) x = (5.91) (9.8)
x = 0.694 m