Answer:
moles of calcium hydroxide= 21.75 mol
a) 43.5 mol
b) 7.25 mol
Explanation:
Please see the attached picture for the full solution.
Other forms of radiation may come from the stars. These radiations include x-ray radiation, ultraviolet radiation, electromagnetic radiation, infrared radiation, alpha ray, beta ray & gamma ray, visible light radiation, radio frequencies radiation and magnet waves.
The given question is incomplete. The complete question is
If 1.0 M HI is placed into a closed container and the reaction is allowed to reach equilibrium at 25∘C∘C, what is the equilibrium concentration of H2 (g). Given the equilibrium constant is 62.
Answer: The equilibrium concentration of
is 0.498 M
Explanation:
Initial concentration of
= 1.0 M
The given balanced equilibrium reaction is,

initial (1.0) M 0 0
At eqm (1.0-2x) M (x) M (x) M
The expression for equilibrium constant for this reaction will be,
![K_c=\frac{[H_2]\times [I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5Ctimes%20%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
Now put all the given values in this expression, we get :

By solving we get :

Thus the equilibrium concentration of
is 0.498 M
The process releases energy and consequently we classify it as exothermic. (d) a person running releases warmness as muscle mass paintings. therefore, the procedure is exothermic.
d) Exothermic, heat is released as a person runs and muscle groups perform work.
A chemical response or bodily exchange is exothermic if warmth is released by using the system into the environment. Because the surroundings are gaining heat from the system, the temperature of the surroundings increases. The sign of q for an exothermic procedure is -ve due to the fact the device is dropping heat.
Some other examples of exothermic reactions:
1)Snow Formation in Clouds.
2)Burning of a Candle.
3)Rusting of Iron.
4)Formation of Ion Pairs.
5)response of strong Acid and Water. etc...
Learn more about exothermic reactions here: brainly.com/question/14018816
#SPJ4