Answer: ORGANIC ACIDS
Explanation:
CAM PLANTS CARBOXYLATE ORGANICS ACIDS through the addition of CO2 to PEP Carboxylase( a phosphoenolpyruvate carboxylase enzyme present in the mesophyll cells of the cytoplasm in a green plant) to produce Oxaloacetate (organic compound).
CO2 + PEP ⇒ C4H4O5 (oxaloacetate)
Oxaloacetate is then converted to a similar molecule, Malate (C4H6O5, another form of organic compound) that can be transported in to the bundle-sheath cells. Malate enters the plasmodesmata and releases the CO2. The CO2 then fixed by rubisco and made into sugars via the Calvin cycle.
This impurity is troubling from an economic standpoint because it lead to decrease in the yield of phosphorus
- Ferrophosphorus is a byproduct of phosphorus production in submerged-arc furnaces , by their reduction with carbon. It is formed from the iron oxide impurities.
- Iron impurities present in the calcium phosphate will be precipitated out as the iron phosphate which eventually will lead to the decrease in the yield of phosphorous during the production of phosphorous.
Thus we can conclude that Fe₂P causes decrease in yield
Learn more about production of phosphorus at brainly.com/question/13337198
#SPJ4
Explanation:
a. A divergent plate boundary process takes place
b. A convergent plate boundary process takes place
c. A transform plate boundary process takes place
The boiling point depends on the strength of the intermolecular forces holding the molecules together. Greater the force, higher is the boiling point.
The intermolecular force increases in the order shown below:
ion-ion > H-bonding > dipole-dipole > London dispersion
CH3CN is a polar molecule with strong dipole-dipole forces
CH3CH2CH3 is non-polar held by london dispersion
Ar exist as a gas. It will have a lowest boiling point
Thus the order of decreasing b.pt is:
CH3CN > CH3CH2CH3 > Ar