Answer:
ffgghhhhhgffffffcvvvvvvvvvvvvvvvvvv
Explanation:
cccvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
Answer:
over 10 weeks the plant will grow 24 time longer than the the same hieght of the plant and the plant age will become 45 and so the plant is very much give hey man is my answer corecct
Explanation:
Answer:
CCl4- tetrahedral bond angle 109°
PF3 - trigonal pyramidal bond angles less than 109°
OF2- Bent with bond angle much less than 109°
I3 - linear with bond angles = 180°
A molecule with two double bonds and no lone pairs - linear molecule with bond angle =180°
Explanation:
Valence shell electron-pair repulsion theory (VSEPR theory) helps us to predict the molecular shape, including bond angles around a central atom, of a molecule by examination of the number of bonds and lone electron pairs in its Lewis structure. The VSEPR model assumes that electron pairs in the valence shell of a central atom will adopt an arrangement which tends to minimize repulsions between these electron pairs by maximizing the distance between them. The electrons in the valence shell of a central atom are either bonding pairs of electrons, located primarily between bonded atoms, or lone pairs. The electrostatic repulsion of these electrons is reduced when the various regions of high electron density assume positions as far apart from each other as possible.
Lone pairs and multiple bonds are known to cause more repulsion than single bonds and bond pairs. Hence the presence of lone pairs or multiple bonds tend to distort the molecular geometry geometry away from that predicted on the basis of VSEPR theory. For instance CCl4 is tetrahedral with no lone pair and four regions of electron density around the central atom. This is the expected geometry. However OF2 also has four regions of electron density but has a bent structure. The molecule has four regions of electron density but two of them are lone pairs causing more repulsion. Hence the observed bond angle is less than 109°.
Metals are to the left of the zig-zag, nonmetals are to the right, and metalloids lie on/beside the line.
Answer:
CO is considered as a product.
Explanation:
A general chemical equation for a combination reaction follows:
To write a chemical equation, we must follow some of the rules:
The reactants must be written on the left side of the direction arrow.
A '+' sign is written between the reactants, when more than one reactants are present.
An arrow is added after all the reactants are written in the direction where reaction is taking place. Here, the reaction is taking place in forward direction.
The products must be written on the right side of the direction arrow.
A '+' sign is written between the products, when more than one products are present.
For the given chemical equation:
are the reactants in the reaction and are the products in the reaction.
Hence, CO is considered as a product.