1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuliya22 [10]
2 years ago
15

PLEASE HELP :) THANK YOU Geologic processes change Earth's surface on varying scales of space and time. They range from rapid to

very slow; from large to microscopic.
How does the time scale of slow geologic processes affect human perception of landforms on Earth? Provide details to support your answer.

Physics
1 answer:
Misha Larkins [42]2 years ago
7 0

Answer:

Human change the surface by mining it, falting it for land, we remove tree,plants, soil,mud, to build space for buidlings, farms, and etc hopes this help

Explanation:

You might be interested in
What term best describes the geologic event taking place in the above illustration?
grigory [225]

u lying you made me get it wrong, for ya'll out there who want the real answer is sea floor spreading

8 0
3 years ago
Read 2 more answers
An asteroid is on a collision course with Earth. An astronaut lands on the rock to bury explosive charges that will blow the ast
forsale [732]

Answer:

The maximum radius the asteroid can have for her to be able to leave it entirely simply by jumping straight up is approximately 1782.45 meters

Explanation:

Whereby the height the astronaut can jump on Earth = 0.500 m, we have the following kinematic equation;

v² = u² - 2·g·h

Where;

v = The final velocity

u = The initial velocity

g = The acceleration due to gravity ≈ 9.8 m/s²

h = The height she jumps

At the maximum height, h_{max} = 0.500 m, she jumps, v = 0, therefore, we have;

0² = u² - 2·g·h_{max}

u² = 2 × 9.8 × 0.5 = 9.8

u = √9.8 ≈ 3.13

u = 3.13 m/s

Her initial jumping velocity ≈ 3.13 m/s

Escape velocity, v_e = \sqrt{\dfrac{2 \cdot G \cdot M}{r} }

Where;

M = The mass of the asteroid

G = The Universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)

r = The radius of the asteroid

The average density of the Earth = 5515 kg/m³

The mass of the asteroid, M = Density × Volume = 5515 kg/m³× 4/3 × π × r³

The escape velocity, she has, v_e ≈ 3.13 m/s is therefore;

3.13 = \sqrt{\dfrac{2 \times 6.67408 \times 10^{-11} \times 5515 \times \frac{4}{3} \times \pi \times r^3}{r} } = r \times \sqrt{3.084 \times 10^{-6}}

r = \dfrac{3.13}{ \sqrt{3.084 \times 10^{-6}}} \approx 1782.45

Therefore, the maximum radius of the asteroid can have for her jumping velocity to be equal to the escape velocity for her to be able to leave it entirely simply by jumping straight up = r ≈ 1782.45 meters.

7 0
3 years ago
What is the split atom called?
son4ous [18]

If you're talking about the <em>splitting</em> of an atom, the process is called Nuclear Fission.

3 0
3 years ago
Read 2 more answers
The smallest known galaxy, Segue 2, has an approximate radius of 1.05 × 1015 kilometers. Use the conversion factors 1 light-year
scoundrel [369]

( 1.05 x 10¹⁵ km ) x ( 1 LY / 9.5 x 10¹² km ) x ( 1 psc / 3.262 LY ) =

(1.05) / (9.5 x 3.262) x (km · LY · psc) / (km · LY) x (10¹⁵⁻¹²) =

(0.03388) x (psc) x (10³) =

33.88 parsecs


5 0
3 years ago
The displacement of a 500 g mass, undergoing simple harmonic motion, is defined by the function :
Delicious77 [7]

The maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

<h3>What is simple harmonic motion?</h3>

Simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side.

Simple Harmonic Motion

The given equation of the simple harmonic motion is

x=3.5 sin (\frac{\pi }{2t} + \frac{5\pi }{4} )

Data;

ω = π/2

k = 1.254N/m

Solving this

\frac{dx}{dt} = -3.5 X \frac{\pi }{2} cos (\frac{x\pi t}{2}+\frac{5\pi }{4}  )

Let's calculate the maximum velocity.

V_{m} =\frac{3.5\pi }{2}

This is only possible when cos θ = -1

The maximum kinetic energy is

K_m =\frac{1}{2} mv^2 = \frac{1}{2} X \frac{500}{1000} X \frac{7^2\pi ^2}^{4} ^2

w^2 = \frac{k}{m} \\k = w^2m\\k = \frac{\pi ^2}{4} X \frac{500}{1000} \\k =1.254 N/m

Using the value of spring constant, we can find the maximum potential energy.

P.E =\frac{1}{2} k x^2\\P.E =\frac{1}{2} X 1.234 X 3.5^2 \\P.E = 7.56 J

The maximum potential energy is 7.56J

The maximum mechanical energy is equal to the sum of maximum potential energy and the maximum kinetic energy.

ME = K.E + P.E

ME = 7.56J

From the calculations above, the maximum kinetic energy, maximum potential energy and the maximum mechanical energy are equal to 7.56J.

Learn more on simple harmonic motion here;

brainly.com/question/15556430

#SPJ1

8 0
2 years ago
Other questions:
  • A 19.3 kg dog is running northward at 2.98 m/s , while a 6.26 kg cat is running eastward at 3.64 m/s . Their 78.7 kg owner has t
    10·1 answer
  • All elements in the same group____
    12·1 answer
  • How much heat is required to convert 500g of liquid water at 28°C into steam at 150 °C? Take the specific heat capacity of water
    6·1 answer
  • What is the biggest current disadvantage to using gas hydrates as a form of energy?
    5·2 answers
  • What is the difference between conductor and insulator
    14·1 answer
  • A 306 g cart moves on a horizontal, frictionless surface with a constant speed of 14.2 cm/s. A 76.3 g piece of modeling clay is
    7·1 answer
  • Emma a total of 25 seconds to crawl 4 feet south and then 6 feet east.
    10·1 answer
  • 2 t of ferrous scrap at a temperature of 20 degrees is heated to the melting point and melted. How much to consume?
    14·1 answer
  • A 7.0 kg box is at rest on a table. The static friction coefficient jis between the box and table is 0.40, and
    14·1 answer
  • Eva Baul throws a ball upward at 23.4 m/s
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!