Complete question is;
You are looking at a module specification
sheet that has the table of information
below. What is the maximum power of this
module in Watts to the nearest whole Watt?
Value
Polycrystalline si
Characteristic
Cell Type
Cell
Configuration
Voc
160 in series
137.2 V
V_imp: 29.3 V
Ilsc: 8.60 A
I_Imp: 8.02 A
Dimensions (mm/in): 1000 x 1600 x 50 mm / 39.4" x 63" x 2"
Weight: 10 kg / 22 lbs
Answer:
P ≈ 235 Watts
Explanation:
Formula for power is;
P = IV
Now, for maximum power, we will make use of I_imp and V_imp given
Thus, P = I_imp × V_imp
We are given;
V_imp: 29.3 V
I_Imp: 8.02 A
Thus: P = 8.02 × 29.3 = 234.986 Watts
We are to approximate to the nearest whole watt.
Thus: P ≈ 235 Watts
Answer:
A fluid's viscosity strongly depends on its temperature. Along with the shear rate, temperature really is the dominating influence
Explanation:
The higher the temperature is, the lower a substance's viscosity is. Consequently, decreasing temperature causes an increase in viscosity.
Answer:
92 protons
Explanation:
The mass number is
238
, so the nucleus has <u>238 particles</u> in total, including <u>146 neutrons</u>. So to calculate the number of neutrons we have to subtract: 238 − 146 = 92
The moment of inertia is 
Explanation:
The total moment of inertia of the system is the sum of the moment of inertia of the rod + the moment of inertia of the two balls.
The moment of inertia of the rod about its centre is given by

where
M = 24 kg is the mass of the rod
L = 0.96 m is the length of the rod
Substituting,

The moment of inertia of one ball is given by

where
m = 50 kg is the mass of the ball
is the distance of each ball from the axis of rotation
So we have

Therefore, the total moment of inertia of the system is

Learn more about inertia:
brainly.com/question/2286502
brainly.com/question/691705
#LearnwithBrainly
Trips/slips/falls are among the most common types of work related injuries and/or deaths.