M=2.45 because you multiply out the equation on the right and divide by 10
Answer:
For every action, there is an equal and opposite reaction.
Explanation:
Physics helps alot lol
Given Information:
Wavelength = λ = 39.1 cm = 0.391 m
speed of sound = v = 344 m/s
linear density = μ = 0.660 g/m = 0.00066 kg/m
tension = T = 160 N
Required Information:
Length of the vibrating string = L = ?
Answer:
Length of the vibrating string = 0.28 m
Explanation:
The frequency of beautiful note is
f = v/λ
f = 344/0.391
f = 879.79 Hz
As we know, the speed of the wave is
v = √T/μ
v = √160/0.00066
v = 492.36 m/s
The wavelength of the string is
λ = v/f
λ = 492.36/879.79
λ = 0.5596 m
and finally the length of the vibrating string is
λ = 2L
L = λ/2
L = 0.5596/2
L = 0.28 m
Therefore, the vibrating section of the violin string is 0.28 m long.
Answer:
To=20.44 °C
Explanation:
Given that
Velocity , v= 30 m/s
Temperature , T= 20°C
We know that specific heat capacity for air ,Cp=1.005 kJ/kg.K
By using energy conservation ,the stagnation temperature is given as

Now by putting the values in the above equation we get

To= 293.44 K
To= 293.44 - 273 °C
To=20.44 °C
Therefore the stagnation temperature will be 20.44 °C.