Answer:
B. A object in motion stays in motion, and an object at rest stays at rest unless acted upon by a net force.
Answer:
4.9 m/s
Explanation:
Since the motion of the ball is a uniformly accelerated motion (constant acceleration), we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the ball in this problem,
u = 0 (it starts from rest)
is the acceleration
s = 3 m is the distance covered
Solving for v,

<h2>The acceleration of car is 0.2 ms⁻²</h2>
Explanation:
When the car moves , the distance covered is calculated by the relation
S = u t +
a t²
In this question u = 0 , because car was at rest initially
Thus S =
a t²
here S is displacement and a is the acceleration of car
Therefore 360 =
a ( 60 )²
Because time taken is one minute or 60 seconds
Therefore a = 
or a = 0.2 m s⁻²
The total quantity of electrons that have flowed through a circuit is a
quantity of charge, measured in Coulombs, or in Ampere-seconds.
The <em><u>rate</u></em> of flow of electrons, or more accurately the rate of flow of
the charge on them, is electrical current. Its unit is the Ampere.
1 Ampere is 1 Coulomb of charge per second.
Answer:
Net force on the wagon is 200 N
Explanation:
As we know by Newton's II law that net force on the system of mass is given as product of mass and acceleration
Here we know that
mass = 100 kg
a = 2 m/s/s
now we have


