1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
11

Sage correctly found the following quotient. 1 1/2 divided by 1/3= 4 1/2 . (a) Create a model to show the quotient. (b) Explain

what the half in the quotient refers to in your model
Mathematics
1 answer:
astraxan [27]3 years ago
7 0
(a) for this you need to draw an example. Like a pizza or pie being cut.

(b) show that half of the quotient refers to Sage dividing the pizza/pie
You might be interested in
The sum of 17 and a number x is expand to 20 (Write an equation for the decription)
Rudiy27

So the sum of 17 and a number x means to add them on one side of the equals sign. The other side would be your 20.

17 + x = 20

3 0
3 years ago
Can someone check whether its correct or no? this is supposed to be the steps in integration by parts​
Gwar [14]

Answer:

\displaystyle - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

Step-by-step explanation:

\boxed{\begin{minipage}{5 cm}\underline{Integration by parts} \\\\$\displaystyle \int u \dfrac{\text{d}v}{\text{d}x}\:\text{d}x=uv-\int v\: \dfrac{\text{d}u}{\text{d}x}\:\text{d}x$ \\ \end{minipage}}

Given integral:

\displaystyle -\int \dfrac{\sin(2x)}{e^{2x}}\:\text{d}x

\textsf{Rewrite }\dfrac{1}{e^{2x}} \textsf{ as }e^{-2x} \textsf{ and bring the negative inside the integral}:

\implies \displaystyle \int -e^{-2x}\sin(2x)\:\text{d}x

Using <u>integration by parts</u>:

\textsf{Let }\:u=\sin (2x) \implies \dfrac{\text{d}u}{\text{d}x}=2 \cos (2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

Therefore:

\begin{aligned}\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\sin (2x)- \int \dfrac{1}{2}e^{-2x} \cdot 2 \cos (2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\sin (2x)- \int e^{-2x} \cos (2x)\:\text{d}x\end{aligned}

\displaystyle \textsf{For }\:-\int e^{-2x} \cos (2x)\:\text{d}x \quad \textsf{integrate by parts}:

\textsf{Let }\:u=\cos(2x) \implies \dfrac{\text{d}u}{\text{d}x}=-2 \sin(2x)

\textsf{Let }\:\dfrac{\text{d}v}{\text{d}x}=-e^{-2x} \implies v=\dfrac{1}{2}e^{-2x}

\begin{aligned}\implies \displaystyle -\int e^{-2x}\cos(2x)\:\text{d}x & =\dfrac{1}{2}e^{-2x}\cos(2x)- \int \dfrac{1}{2}e^{-2x} \cdot -2 \sin(2x)\:\text{d}x\\\\& =\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x\end{aligned}

Therefore:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+ \int e^{-2x} \sin(2x)\:\text{d}x

\textsf{Subtract }\: \displaystyle \int e^{-2x}\sin(2x)\:\text{d}x \quad \textsf{from both sides and add the constant C}:

\implies \displaystyle -2\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{2}e^{-2x}\sin (2x) +\dfrac{1}{2}e^{-2x}\cos(2x)+\text{C}

Divide both sides by 2:

\implies \displaystyle -\int e^{-2x}\sin(2x)\:\text{d}x =\dfrac{1}{4}e^{-2x}\sin (2x) +\dfrac{1}{4}e^{-2x}\cos(2x)+\text{C}

Rewrite in the same format as the given integral:

\displaystyle \implies - \int \dfrac{\sin(2x)}{e^{2x}}\: \text{d}x=\dfrac{\sin(2x)}{4e^{2x}}+\dfrac{\cos(2x)}{4e^{2x}}+\text{C}

5 0
2 years ago
Check my work? I came up with 60 degrees. Let me know!
dalvyx [7]
90 minus 32 is 58! You were off by two degrees:)
3 0
3 years ago
Read 2 more answers
Please help me TT,,,
mars1129 [50]
The correct answer is 63
5 0
3 years ago
hello fellow indians Question: Lawrence poured 27.328 L of water into a right rectangular prism- shaped tank. The base of the ta
boyakko [2]

Answer: andres is 5 years old pls banned him he called e a mean word like the N word

Step-by-step explanation:

3 0
1 year ago
Other questions:
  • 5m – 17 – 5 + 2m solve
    12·1 answer
  • -4(9r+10)+5(10r+7) simplified
    10·2 answers
  • PLEASE HELP<br><br> Solve: 3 square root x^2-8=2
    9·1 answer
  • Write an equation in slope-intercept form for the following line:
    13·1 answer
  • What is the change in temperature from 20 degrees to -8 degrees ?
    12·2 answers
  • Solve multi step equations <br> a-2+3 = -2.
    14·2 answers
  • Select the correct answer. Each of the four angles of a quadrilateral measures 90°. How many rectangles can you construct using
    11·2 answers
  • Please help me with a math question ASAP!!! Will give Brainliest
    10·2 answers
  • can you find the lengths and area and type the correct code? Please remember to type in all caps with no space​
    5·2 answers
  • Solve the following:
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!