The number of candies that will be <u>left over</u> after giving everyone an equal amount is equal to 23.
<u>Given the following data:</u>
- Total number of candy = 320 pieces
- Number of classmates = 27 classmates
To calculate the number of candies that will be <u>left over</u> after giving everyone an equal amount:
In this exercise, you're required to determine the number of candies Phillipe would have as <u>left over</u> after giving everyone in his class an equal amount of candies.
<h3>How to solve this word problem.</h3>
Thus, we would find the number of times 27 would divide 320 without any remainder.

- From the mixed fraction, we can deduce that the remainder is 23.
Therefore, the number of candies that will be <u>left over</u> after giving everyone an equal amount is equal to 23.
Read more on word problems here: brainly.com/question/13170908
Answer:
x<4
Step-by-step explanation:
x/2-3<-1
Add 3 to each side
x/2-3+3<-1+3
x/2 < 2
Multiply each side by 2
x/2*2 <2*2
x<4
Step-by-step explanation:
SSS
SSS stands for "side, side, side" and means that we have two triangles with all three sides equal. For example: is congruent to: (See Solving SSS Triangles to find out more) If three sides of one triangle are equal to three sides of another triangle, the triangles are congruent
SAS
The Side Angle Side postulate (often abbreviated as SAS) states that if two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then these two triangles are congruent.
ASA
ASA stands for "angle, side, angle" and means that we have two triangles where we know two angles and the included side are equal. For example: is congruent to: (See Solving ASA Triangles to find out more)
AAS
The Angle Angle Side postulate (often abbreviated as AAS) states that if two angles and the non-included side one triangle are congruent to two angles and the non-included side of another triangle, then these two triangles are congruent.
Answer: The answer is supply.
Step-by-step explanation:
I just took the test for it.