Answer:
80m, assuming g=10m/s^2
Explanation:
40m/s will be reduced to 0m/s in 4 seconds. 4 seconds x 40m/s would be 160m up, but you will only get half of that because you decelerate linearly to 0m/s. This leaves you with 4 x 20 = 80m.
Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to 
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So 


So coefficient of kinetic friction will be equal to 0.4081
Answer:
0.035 N
Explanation:
Parameters given:
Charge q1 = -3.31x10^(-7) C
Charge q2 = -5.7x10^(-7) C.
Distance between them, R = 22 cm = 0.22 m
Electrostatic force between to particles is given as:
F = (k* q1 * q2) / R²
F = (9 * 10^9 * -3.31 * 10^(-7) * -5.7 * 10^(-7)) / 0.22²
F = 0.035 N
I don't understand the language.....