Answer:
3.75 hours
Explanation:
By 
where v is the velocity (or speed in this case)
d is the distance travelled
t is the time taken

Therefore it takes 3.75 hours for the bus to travel 150 km and 40 km/hr.
False the North Star never changes it position
In that case, their momentum must be equal.
So, m1v1 = m2v2
20 * 20 = 40 * v2
v2 = 400 / 40
v2 = 10
In short, Your Answer would be: 10 m/s
Hope this helps!
Answer:
Plants slow down water as it flows over the land and this allows much of the rain to soak into the ground. Plant roots hold the soil in position and prevent it from being blown or washed away. Plants break the impact of a raindrop before it hits the soil, reducing the soil's ability to erode.
Explanation:
<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>