Average rate of change means find the slope of the secant line. So if there is a function f(x) and you want to find the average R.O.C over the interval [a,b], it would be (f(b)-f(a))/(b-a)
1. (f(3)-f(1))/(3-1)= (0-(-2))/2= 1, so D.
2. Same concept; (8-4)/(3-1)=2, so A.
3. Again, (39-(-1))/5= 8, B.
<em>I think your answer is fine</em>
A. 4x + 9 = 34
<u> - 9 - 9</u>
<u>4x</u> = <u>25</u>
4 4
x = 6.25
B. (x - 4)(x + 2) = 0
x - 4 = 0 U x + 2 = 0
<u> + 4 + 4</u> <u> - 2 - 2</u>
x = 4 x = -2
C. 2x² - 6x + 4 = 0
2(x²) - 2(3x) + 2(2) = 0
<u>2(x² - 3x + 2)</u> = <u>0</u>
2 2
x² - 3x + 2 = 0
x = <u>-(-3) +/- √((-3)² - 4(1)(2))</u>
2(1)
x = <u>3 +/- √(9 - 8)</u>
2
x = <u>3 +/- √(1)
</u> 2<u>
</u> x =<u> 3 +/- 1
</u> 2
x = <u>3 + 1</u> U x = <u>3 - 1</u>
2 2
x = <u>4</u> x = <u>2</u>
2 2
x = 2 x = 1
<u />