Answer:
the answer is 114 (づ。◕‿‿◕。)づ
Answer:
i think it would be 4x4=8+8=16
Answer:
you talking to specific people or can anyone join
Step-by-step explanation:
Answer:
![\begin{array}{cccccc}{x} & {V} & {W} & {X} & {Y} & {Z} & P(x) & {0.20} & {0.20} & {0.20} & {0.20} & {0.20} \ \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcccccc%7D%7Bx%7D%20%26%20%7BV%7D%20%26%20%7BW%7D%20%26%20%7BX%7D%20%26%20%7BY%7D%20%26%20%7BZ%7D%20%26%20P%28x%29%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%5C%20%5Cend%7Barray%7D)
Step-by-step explanation:
Given
![S = \{V,W,X,Y,Z\}](https://tex.z-dn.net/?f=S%20%3D%20%5C%7BV%2CW%2CX%2CY%2CZ%5C%7D)
![n(S) = 5](https://tex.z-dn.net/?f=n%28S%29%20%3D%205)
Required
The probability model
To do this, we simply calculate the probability of each container.
So, we have:
![P(V) = \frac{n(V)}{n(S)} = \frac{1}{5} = 0.20](https://tex.z-dn.net/?f=P%28V%29%20%3D%20%5Cfrac%7Bn%28V%29%7D%7Bn%28S%29%7D%20%3D%20%5Cfrac%7B1%7D%7B5%7D%20%3D%200.20)
![P(W) = \frac{n(W)}{n(S)} = \frac{1}{5} = 0.20](https://tex.z-dn.net/?f=P%28W%29%20%3D%20%5Cfrac%7Bn%28W%29%7D%7Bn%28S%29%7D%20%3D%20%5Cfrac%7B1%7D%7B5%7D%20%3D%200.20)
![P(X) = \frac{n(X)}{n(S)} = \frac{1}{5} = 0.20](https://tex.z-dn.net/?f=P%28X%29%20%3D%20%5Cfrac%7Bn%28X%29%7D%7Bn%28S%29%7D%20%3D%20%5Cfrac%7B1%7D%7B5%7D%20%3D%200.20)
![P(Y) = \frac{n(Y)}{n(S)} = \frac{1}{5} = 0.20](https://tex.z-dn.net/?f=P%28Y%29%20%3D%20%5Cfrac%7Bn%28Y%29%7D%7Bn%28S%29%7D%20%3D%20%5Cfrac%7B1%7D%7B5%7D%20%3D%200.20)
![P(Z) = \frac{n(Z)}{n(S)} = \frac{1}{5} = 0.20](https://tex.z-dn.net/?f=P%28Z%29%20%3D%20%5Cfrac%7Bn%28Z%29%7D%7Bn%28S%29%7D%20%3D%20%5Cfrac%7B1%7D%7B5%7D%20%3D%200.20)
So, the probability model is:
![\begin{array}{cccccc}{x} & {V} & {W} & {X} & {Y} & {Z} & P(x) & {0.20} & {0.20} & {0.20} & {0.20} & {0.20} \ \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bcccccc%7D%7Bx%7D%20%26%20%7BV%7D%20%26%20%7BW%7D%20%26%20%7BX%7D%20%26%20%7BY%7D%20%26%20%7BZ%7D%20%26%20P%28x%29%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%26%20%7B0.20%7D%20%5C%20%5Cend%7Barray%7D)