1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
7

How to solve derivative of (sin3x)/x using first principle ​

Mathematics
2 answers:
Leona [35]3 years ago
7 0

\dfrac{d}{dx}(\dfrac{\sin(3x)}{x})

First we must apply the Quotient rule that states,

(\dfrac{f}{g})'=\dfrac{f'g-g'f}{g^2}

This means that our derivative becomes,

\dfrac{\dfrac{d}{dx}(\sin(3x))x-\dfrac{d}{dx}(x)\sin(3x)}{x^2}

Now we need to calculate \dfrac{d}{dx}(\sin(3x)) and \dfrac{d}{dx}(x)

\dfrac{d}{dx}(\sin(3x))=\cos(3x)\cdot3

\dfrac{d}{dx}(x)=1

From here the new equation looks like,

\dfrac{3x\cos(3x)-\sin(3x)}{x^2}

And that is the final result.

Hope this helps.

r3t40

Ede4ka [16]3 years ago
5 0

Answer:

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

Step-by-step explanation:

If f(x)=\frac{\sin(3x)}{x}, then  

f(x+h)=\frac{\sin(3(x+h)}{x+h}=\frac{\sin(3x+3h)}{x+h}.

To find this all I did was replace old input, x, with new input, x+h.

Now we will need this for our definition of derivative which is:

f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}

Before we go there I want to expand sin(3x+3h) using the sum identity for sine:

\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)

\sin(3x+3h)=\sin(3x)\cos(3h)+\cos(3x)\sin(3h)

So we could write f(x+h) as:

f(x+h)=\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}.

There are some important trigonometric limits we might need before proceeding with the definition for derivative:

\lim_{u \rightarrow 0}\frac{\sin(u)}{u}=1

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

Now let's go to the definition:

f'(x)=\lim_{h \rightarrow 0}\frac{\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}-\frac{\sin(3x)}{x}}{h}

I'm going to clear the mini-fractions by multiplying top and bottom by a common multiple of the denominators which is x(x+h).

f'(x)=\lim_{h \rightarrow 0}\frac{x(\sin(3x)\cos(3h)+\cos(3x)\sin(3h))-(x+h)\sin(3x)}{x(x+h)h}

I'm going to distribute:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)+x\cos(3x)\sin(3h)-x\sin(3x)-h\sin(3x)}{x(x+h)h}

Now I’m going to group xsin(3x)cos(3h) with –xsin(3x) because I see when I factor this I might be able to use the second trigonometric limit I mentioned.  That is xsin(3x)cos(3h)-xsin(3x) can be factored as xsin(3x)[cos(3h)-1].

Now the limit I mentioned:

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

If I let u=3h then we have:

\lim_{3h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If 3h goes to 0, then h goes to 0:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If I multiply both sides by 3 I get:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h}=0

I’m going to apply this definition after I break my limit using the factored form I mentioned for those two terms:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)-x\sin(3x)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

So the first limit I’m going to write as a product of limits so I can apply the limit I have above:

f’(x)=\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h} \cdot \lim_{h \rightarrow 0}\frac{x\sin(3x)}{x(x+h)}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

The first limit in that product of limits goes to 0 using our limit from above.

The second limit goes to sin(3x)/(x+h) which goes to sin(3x)/x since h goes to 0.

Since both limits exist we are good to proceed with that product.

Let’s look at the second limit given the first limit is 0. This is what we are left with looking at:

f’(x)=\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

I’m going to write this as a sum of limits:

\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{-h\sin(3x)}{x(x+h)h}

I can cancel out a factor of x in the first limit.  

I can cancel out a factor of h in the second limit.

\lim_{h \rightarrow 0}\frac{\cos(3x)\sin(3h)}{(x+h)h}+\lim_{h \rightarrow 0}\frac{-\sin(3x)}{x(x+h)}

Now I can almost use sin(u)/u goes to 1 as u goes to 0 for that first limit after writing it as a product of limits.  

The second limit I can go ahead and replace h with 0 since it won’t be over 0.

So this is what we are going to have after writing the first limit as a product of limits and applying h=0 to the second limit:

\lim_{h \rightarrow 0}\frac{\sin(3h)}{h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x+0)}

Now the first limit in the product I’m going to multiply it by 3/3 so I can apply my limit as sin(u)/u->1 then u goes to 0:

\lim_{h \rightarrow 0}3\frac{\sin(3h)}{3h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

3(1) \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

So we can plug in 0 for that last limit; the result will exist because we do not have over 0 when replacing h with 0.

3(1)\frac{\cos(3x)}{x}+\frac{-\sin(3x)}{x^2}

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

You might be interested in
The graph show the grades that students received on a test. What percent of the students received a grade of A ?
Tema [17]

Answer:

what graph..show the graph

Step-by-step explanation:

7 0
3 years ago
Select the expression that is equivalent<br> to 4.1.d.d.d.
Molodets [167]
? I’m confused is there supposed to be a picture to this? I don’t see a expression so..
8 0
3 years ago
Find the measures of the missing angles <br><br><br><br> Help pleaseee
kondaur [170]

Answer:

Nwm miałem to dawno powodzenia

6 0
3 years ago
Read 2 more answers
Which of these is a unit of density?<br> Please help.
katen-ka-za [31]

Answer:

I think is C.

Step-by-step explanation:

Hope it's help you ❤️❤️❤️❤️❤️❤️❤️

7 0
3 years ago
Read 2 more answers
What makes a sample random
Yuliya22 [10]

Answer:

<u>A simple random sample is a subset of a statistical population in which each member of the subset has an equal probability of being chosen. ... An example of a simple random sample would be the names of 25 employees being chosen out of a hat from a company of 250 employees</u>

<u>Step-by-step explanation:</u>

<u>i searched it up</u>

7 0
3 years ago
Read 2 more answers
Other questions:
  • You are at a trade show where you are selling baseball cards for $4 a card and buying baseball cards for $6 a card. If you start
    13·1 answer
  • Solve 5x+14=k for x<br> A. X=k-14<br> B. X=5K-14<br> C.X=k+14/5<br> D.X=k-14/5
    13·1 answer
  • Questions. multiple choicw
    9·1 answer
  • Find the equation of the line with slope 2/5 and y-intercept (0,−2).
    8·2 answers
  • Factor completely.<br> 2x2 - 18x + 36 =<br> Stuck? Use a hint.<br> Rep<br> 3
    5·1 answer
  • What is the best first step to solve the equation
    5·1 answer
  • GIVING BRAINLIES, PLS HELP !!! :(
    14·1 answer
  • (no links or files) Solve this equation using the quadratic formula. This question should be solved both ways. (1) Quadratic For
    8·1 answer
  • at a certain fast-food restaurant, the volume of a large soda is 35% greater than the volume of a small soda. if the volume of t
    14·1 answer
  • Jim's monthly salary is $1,079.40. His monthly job hours are 140. What is his hourly rate of pay?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!