1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
2 years ago
7

How to solve derivative of (sin3x)/x using first principle ​

Mathematics
2 answers:
Leona [35]2 years ago
7 0

\dfrac{d}{dx}(\dfrac{\sin(3x)}{x})

First we must apply the Quotient rule that states,

(\dfrac{f}{g})'=\dfrac{f'g-g'f}{g^2}

This means that our derivative becomes,

\dfrac{\dfrac{d}{dx}(\sin(3x))x-\dfrac{d}{dx}(x)\sin(3x)}{x^2}

Now we need to calculate \dfrac{d}{dx}(\sin(3x)) and \dfrac{d}{dx}(x)

\dfrac{d}{dx}(\sin(3x))=\cos(3x)\cdot3

\dfrac{d}{dx}(x)=1

From here the new equation looks like,

\dfrac{3x\cos(3x)-\sin(3x)}{x^2}

And that is the final result.

Hope this helps.

r3t40

Ede4ka [16]2 years ago
5 0

Answer:

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

Step-by-step explanation:

If f(x)=\frac{\sin(3x)}{x}, then  

f(x+h)=\frac{\sin(3(x+h)}{x+h}=\frac{\sin(3x+3h)}{x+h}.

To find this all I did was replace old input, x, with new input, x+h.

Now we will need this for our definition of derivative which is:

f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}

Before we go there I want to expand sin(3x+3h) using the sum identity for sine:

\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)

\sin(3x+3h)=\sin(3x)\cos(3h)+\cos(3x)\sin(3h)

So we could write f(x+h) as:

f(x+h)=\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}.

There are some important trigonometric limits we might need before proceeding with the definition for derivative:

\lim_{u \rightarrow 0}\frac{\sin(u)}{u}=1

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

Now let's go to the definition:

f'(x)=\lim_{h \rightarrow 0}\frac{\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}-\frac{\sin(3x)}{x}}{h}

I'm going to clear the mini-fractions by multiplying top and bottom by a common multiple of the denominators which is x(x+h).

f'(x)=\lim_{h \rightarrow 0}\frac{x(\sin(3x)\cos(3h)+\cos(3x)\sin(3h))-(x+h)\sin(3x)}{x(x+h)h}

I'm going to distribute:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)+x\cos(3x)\sin(3h)-x\sin(3x)-h\sin(3x)}{x(x+h)h}

Now I’m going to group xsin(3x)cos(3h) with –xsin(3x) because I see when I factor this I might be able to use the second trigonometric limit I mentioned.  That is xsin(3x)cos(3h)-xsin(3x) can be factored as xsin(3x)[cos(3h)-1].

Now the limit I mentioned:

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

If I let u=3h then we have:

\lim_{3h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If 3h goes to 0, then h goes to 0:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If I multiply both sides by 3 I get:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h}=0

I’m going to apply this definition after I break my limit using the factored form I mentioned for those two terms:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)-x\sin(3x)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

So the first limit I’m going to write as a product of limits so I can apply the limit I have above:

f’(x)=\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h} \cdot \lim_{h \rightarrow 0}\frac{x\sin(3x)}{x(x+h)}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

The first limit in that product of limits goes to 0 using our limit from above.

The second limit goes to sin(3x)/(x+h) which goes to sin(3x)/x since h goes to 0.

Since both limits exist we are good to proceed with that product.

Let’s look at the second limit given the first limit is 0. This is what we are left with looking at:

f’(x)=\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

I’m going to write this as a sum of limits:

\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{-h\sin(3x)}{x(x+h)h}

I can cancel out a factor of x in the first limit.  

I can cancel out a factor of h in the second limit.

\lim_{h \rightarrow 0}\frac{\cos(3x)\sin(3h)}{(x+h)h}+\lim_{h \rightarrow 0}\frac{-\sin(3x)}{x(x+h)}

Now I can almost use sin(u)/u goes to 1 as u goes to 0 for that first limit after writing it as a product of limits.  

The second limit I can go ahead and replace h with 0 since it won’t be over 0.

So this is what we are going to have after writing the first limit as a product of limits and applying h=0 to the second limit:

\lim_{h \rightarrow 0}\frac{\sin(3h)}{h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x+0)}

Now the first limit in the product I’m going to multiply it by 3/3 so I can apply my limit as sin(u)/u->1 then u goes to 0:

\lim_{h \rightarrow 0}3\frac{\sin(3h)}{3h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

3(1) \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

So we can plug in 0 for that last limit; the result will exist because we do not have over 0 when replacing h with 0.

3(1)\frac{\cos(3x)}{x}+\frac{-\sin(3x)}{x^2}

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

You might be interested in
PLEASE HELP ME!!!!
andrew11 [14]
The answers are
1.C
2.D
3.C
4.B
5.C
8 0
3 years ago
Read 2 more answers
NEED HELP ASAP AND PLEASE EXPLAIN
UNO [17]
What do you need help with ASAP?
5 0
3 years ago
Patricia owned so many posters that she decided to sell 77 of them to her friends.after selling the posters she still had 186 le
allochka39001 [22]

Answer:

Patricia initially had 263 posters.

Step-by-step explanation:

p - 77 = 186

p = 186 + 77

p = 263

8 0
3 years ago
Read 2 more answers
Which of the following points lie in the solution set to the following system of inequalities?
laiz [17]

Answer:

B. (5,-2)

Step-by-step explanation:

Plug in X and Y, verify accuracy

7 0
3 years ago
What is the decimal expansion of -11/15
Orlov [11]

Answer:

−0.73333333333333

Step-by-step explanation:

This is the decimal form of -11/15

4 0
3 years ago
Other questions:
  • Given: x - 5 &gt; -2. <br><br> Choose the solution set.
    14·2 answers
  • Please help me solve this math problem
    10·1 answer
  • I have no idea what to do.. someone please explain??
    9·2 answers
  • X- (-12)=25 <br><br> ( FIND X)
    5·1 answer
  • Simplify the fraction 6 8/28
    7·2 answers
  • Estimate the difference by rounding to the nearest hundred 3860-2757
    9·1 answer
  • Chau and Yoko each opened a savings account today. Chau opened his account with a starting amount of $460, and he is going to pu
    7·1 answer
  • About 58% of students go to a college within 100 miles of their home. If you choose a random sample of 10
    10·1 answer
  • Please please help no links!!
    13·1 answer
  • Gagu is paid £1200 per month.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!