1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
2 years ago
7

How to solve derivative of (sin3x)/x using first principle ​

Mathematics
2 answers:
Leona [35]2 years ago
7 0

\dfrac{d}{dx}(\dfrac{\sin(3x)}{x})

First we must apply the Quotient rule that states,

(\dfrac{f}{g})'=\dfrac{f'g-g'f}{g^2}

This means that our derivative becomes,

\dfrac{\dfrac{d}{dx}(\sin(3x))x-\dfrac{d}{dx}(x)\sin(3x)}{x^2}

Now we need to calculate \dfrac{d}{dx}(\sin(3x)) and \dfrac{d}{dx}(x)

\dfrac{d}{dx}(\sin(3x))=\cos(3x)\cdot3

\dfrac{d}{dx}(x)=1

From here the new equation looks like,

\dfrac{3x\cos(3x)-\sin(3x)}{x^2}

And that is the final result.

Hope this helps.

r3t40

Ede4ka [16]2 years ago
5 0

Answer:

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

Step-by-step explanation:

If f(x)=\frac{\sin(3x)}{x}, then  

f(x+h)=\frac{\sin(3(x+h)}{x+h}=\frac{\sin(3x+3h)}{x+h}.

To find this all I did was replace old input, x, with new input, x+h.

Now we will need this for our definition of derivative which is:

f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}

Before we go there I want to expand sin(3x+3h) using the sum identity for sine:

\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)

\sin(3x+3h)=\sin(3x)\cos(3h)+\cos(3x)\sin(3h)

So we could write f(x+h) as:

f(x+h)=\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}.

There are some important trigonometric limits we might need before proceeding with the definition for derivative:

\lim_{u \rightarrow 0}\frac{\sin(u)}{u}=1

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

Now let's go to the definition:

f'(x)=\lim_{h \rightarrow 0}\frac{\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}-\frac{\sin(3x)}{x}}{h}

I'm going to clear the mini-fractions by multiplying top and bottom by a common multiple of the denominators which is x(x+h).

f'(x)=\lim_{h \rightarrow 0}\frac{x(\sin(3x)\cos(3h)+\cos(3x)\sin(3h))-(x+h)\sin(3x)}{x(x+h)h}

I'm going to distribute:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)+x\cos(3x)\sin(3h)-x\sin(3x)-h\sin(3x)}{x(x+h)h}

Now I’m going to group xsin(3x)cos(3h) with –xsin(3x) because I see when I factor this I might be able to use the second trigonometric limit I mentioned.  That is xsin(3x)cos(3h)-xsin(3x) can be factored as xsin(3x)[cos(3h)-1].

Now the limit I mentioned:

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

If I let u=3h then we have:

\lim_{3h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If 3h goes to 0, then h goes to 0:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If I multiply both sides by 3 I get:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h}=0

I’m going to apply this definition after I break my limit using the factored form I mentioned for those two terms:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)-x\sin(3x)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

So the first limit I’m going to write as a product of limits so I can apply the limit I have above:

f’(x)=\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h} \cdot \lim_{h \rightarrow 0}\frac{x\sin(3x)}{x(x+h)}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

The first limit in that product of limits goes to 0 using our limit from above.

The second limit goes to sin(3x)/(x+h) which goes to sin(3x)/x since h goes to 0.

Since both limits exist we are good to proceed with that product.

Let’s look at the second limit given the first limit is 0. This is what we are left with looking at:

f’(x)=\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

I’m going to write this as a sum of limits:

\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{-h\sin(3x)}{x(x+h)h}

I can cancel out a factor of x in the first limit.  

I can cancel out a factor of h in the second limit.

\lim_{h \rightarrow 0}\frac{\cos(3x)\sin(3h)}{(x+h)h}+\lim_{h \rightarrow 0}\frac{-\sin(3x)}{x(x+h)}

Now I can almost use sin(u)/u goes to 1 as u goes to 0 for that first limit after writing it as a product of limits.  

The second limit I can go ahead and replace h with 0 since it won’t be over 0.

So this is what we are going to have after writing the first limit as a product of limits and applying h=0 to the second limit:

\lim_{h \rightarrow 0}\frac{\sin(3h)}{h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x+0)}

Now the first limit in the product I’m going to multiply it by 3/3 so I can apply my limit as sin(u)/u->1 then u goes to 0:

\lim_{h \rightarrow 0}3\frac{\sin(3h)}{3h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

3(1) \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

So we can plug in 0 for that last limit; the result will exist because we do not have over 0 when replacing h with 0.

3(1)\frac{\cos(3x)}{x}+\frac{-\sin(3x)}{x^2}

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

You might be interested in
Can someone help me please
Anna007 [38]

Answer:

The Area of the shaded region :

(x²)(4x-1) - (5x)(x+7) =

4x³ - x² - 5x² - 35x =

4x³ - 6x² - 35x

6 0
2 years ago
How do I find a variable for a similar figure
gizmo_the_mogwai [7]

Answer:

Sorry if this doesnt make help:

Step-by-step explanation:

When two figures are similar, the ratios of the lengths of their corresponding sides are equal. To determine if the shapes are similar, compare their corresponding sides.

3 0
3 years ago
(9×100)+(8×10)+(7× <br> 1000<br> 1<br> ​<br> )
ivolga24 [154]

Answer:

7980

Step-by-step explanation:

900+80+7000=7980

8 0
2 years ago
You measured the width of your front door to be 3 feet and 2 inches. the chair you are trying to get through the door measured t
Citrus2011 [14]
18 inches or 1 foot and 6 inches
multiply 3 feet by 12 and add two to get the width of the door in inches then subtract 20 inches from it to get the difference
5 0
3 years ago
Read 2 more answers
Christian had $80.45 in his bank account on Monday.He deposited $20.50 on Tuesday.He then withdrew 37.25 on Wednesday.How much d
EastWind [94]

Answer:

138.2

Step-by-step explanation:

3 0
2 years ago
Read 2 more answers
Other questions:
  • A giant circular fair ride has a radius of 60m, with 12passenger pods spaced around the circumference at equal distances. How fa
    15·1 answer
  • In 28% of a sum is $100.80, what is the sum?
    15·2 answers
  • Pls help me with this pls :)
    6·2 answers
  • How do I factor this :)
    13·1 answer
  • There is a bag filled with 4 blue, 3 red and 5 green marbles. A marble is taken at random from the bag, the colour is noted and
    9·1 answer
  • I need help with these questions plz help
    8·1 answer
  • Using the slope formula above, find the slope of the line between two points.
    14·1 answer
  • HELP PLZZZZZZZZZZ I WILL GIVE BRAINLIEST
    11·1 answer
  • Company A charges a $125 annual fee plus $7 per hour car share fee.
    5·2 answers
  • How do i et this answer
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!