1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miss Akunina [59]
3 years ago
7

How to solve derivative of (sin3x)/x using first principle ​

Mathematics
2 answers:
Leona [35]3 years ago
7 0

\dfrac{d}{dx}(\dfrac{\sin(3x)}{x})

First we must apply the Quotient rule that states,

(\dfrac{f}{g})'=\dfrac{f'g-g'f}{g^2}

This means that our derivative becomes,

\dfrac{\dfrac{d}{dx}(\sin(3x))x-\dfrac{d}{dx}(x)\sin(3x)}{x^2}

Now we need to calculate \dfrac{d}{dx}(\sin(3x)) and \dfrac{d}{dx}(x)

\dfrac{d}{dx}(\sin(3x))=\cos(3x)\cdot3

\dfrac{d}{dx}(x)=1

From here the new equation looks like,

\dfrac{3x\cos(3x)-\sin(3x)}{x^2}

And that is the final result.

Hope this helps.

r3t40

Ede4ka [16]3 years ago
5 0

Answer:

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

Step-by-step explanation:

If f(x)=\frac{\sin(3x)}{x}, then  

f(x+h)=\frac{\sin(3(x+h)}{x+h}=\frac{\sin(3x+3h)}{x+h}.

To find this all I did was replace old input, x, with new input, x+h.

Now we will need this for our definition of derivative which is:

f'(x)=\lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}

Before we go there I want to expand sin(3x+3h) using the sum identity for sine:

\sin(a+b)=\sin(a)\cos(b)+\cos(a)\sin(b)

\sin(3x+3h)=\sin(3x)\cos(3h)+\cos(3x)\sin(3h)

So we could write f(x+h) as:

f(x+h)=\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}.

There are some important trigonometric limits we might need before proceeding with the definition for derivative:

\lim_{u \rightarrow 0}\frac{\sin(u)}{u}=1

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

Now let's go to the definition:

f'(x)=\lim_{h \rightarrow 0}\frac{\frac{\sin(3x)\cos(3h)+\cos(3x)\sin(3h)}{x+h}-\frac{\sin(3x)}{x}}{h}

I'm going to clear the mini-fractions by multiplying top and bottom by a common multiple of the denominators which is x(x+h).

f'(x)=\lim_{h \rightarrow 0}\frac{x(\sin(3x)\cos(3h)+\cos(3x)\sin(3h))-(x+h)\sin(3x)}{x(x+h)h}

I'm going to distribute:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)+x\cos(3x)\sin(3h)-x\sin(3x)-h\sin(3x)}{x(x+h)h}

Now I’m going to group xsin(3x)cos(3h) with –xsin(3x) because I see when I factor this I might be able to use the second trigonometric limit I mentioned.  That is xsin(3x)cos(3h)-xsin(3x) can be factored as xsin(3x)[cos(3h)-1].

Now the limit I mentioned:

\lim_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

If I let u=3h then we have:

\lim_{3h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If 3h goes to 0, then h goes to 0:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{3h}=0

If I multiply both sides by 3 I get:

\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h}=0

I’m going to apply this definition after I break my limit using the factored form I mentioned for those two terms:

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)\cos(3h)-x\sin(3x)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)+x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

f'(x)=\lim_{h \rightarrow 0}\frac{x\sin(3x)(\cos(3h)-1)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

So the first limit I’m going to write as a product of limits so I can apply the limit I have above:

f’(x)=\lim_{h \rightarrow 0}\frac{\cos(3h)-1}{h} \cdot \lim_{h \rightarrow 0}\frac{x\sin(3x)}{x(x+h)}+\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

The first limit in that product of limits goes to 0 using our limit from above.

The second limit goes to sin(3x)/(x+h) which goes to sin(3x)/x since h goes to 0.

Since both limits exist we are good to proceed with that product.

Let’s look at the second limit given the first limit is 0. This is what we are left with looking at:

f’(x)=\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)-h\sin(3x)}{x(x+h)h}

I’m going to write this as a sum of limits:

\lim_{h \rightarrow 0}\frac{x\cos(3x)\sin(3h)}{x(x+h)h}+\lim_{h \rightarrow 0}\frac{-h\sin(3x)}{x(x+h)h}

I can cancel out a factor of x in the first limit.  

I can cancel out a factor of h in the second limit.

\lim_{h \rightarrow 0}\frac{\cos(3x)\sin(3h)}{(x+h)h}+\lim_{h \rightarrow 0}\frac{-\sin(3x)}{x(x+h)}

Now I can almost use sin(u)/u goes to 1 as u goes to 0 for that first limit after writing it as a product of limits.  

The second limit I can go ahead and replace h with 0 since it won’t be over 0.

So this is what we are going to have after writing the first limit as a product of limits and applying h=0 to the second limit:

\lim_{h \rightarrow 0}\frac{\sin(3h)}{h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x+0)}

Now the first limit in the product I’m going to multiply it by 3/3 so I can apply my limit as sin(u)/u->1 then u goes to 0:

\lim_{h \rightarrow 0}3\frac{\sin(3h)}{3h} \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

3(1) \cdot \lim_{h \rightarrow 0}\frac{\cos(3x)}{(x+h)}+\frac{-\sin(3x)}{x(x)}

So we can plug in 0 for that last limit; the result will exist because we do not have over 0 when replacing h with 0.

3(1)\frac{\cos(3x)}{x}+\frac{-\sin(3x)}{x^2}

\frac{3\cos(3x)}{x}-\frac{\sin(3x)}{x^2}

You might be interested in
Is 16.45 equal to 16.454
Brrunno [24]
No if it it was 16.450 then it would be equal to 16.45
5 0
3 years ago
Read 2 more answers
Excess fertilizer from crops can be picked up by rainwater and carried to bodies of water that allow plants and algae to grow un
nadezda [96]
Dead zone. Unfortunately these are real and it’s devastating for life.
6 0
3 years ago
hello i was trying to get the understanding on how is 4-6+6=4,,,,,,,my answer (4-6=2+6=8) but me being in high school i know its
frozen [14]
Thanks for the question!

4 - 6 + 6

We can make this easier by doing it one step at a time. First, lets do 4 - 6.

4 - 6 + 6
-2 + 6

Now, solve:

-2 + 6
4

Hope this helps!
6 0
3 years ago
Will give BRAINLIEST!!!!
True [87]

Answer:

your day going so far so good 1

6 0
3 years ago
Read 2 more answers
A peregrine falcon can fly 322 km/h h. How many meters can the falcon fly.
Vitek1552 [10]

That depends on how many fish or mice he ate yesterday, how well
he slept last night, and where he really wants to be.

From the information given in the question, the only things we can
really say for sure is that if he maintains his top speed, he will fly
322,000 meters for every hour that he keeps it up, and that he will
be one scrawny, exhausted bird when it's all over.

5 0
3 years ago
Other questions:
  • If g(x) = 5x + 16; then g(-2) =
    12·1 answer
  • What is 7 time 4and 6 times 7
    10·2 answers
  • Which relation is a function??
    14·1 answer
  • IQ scores are normally distributed with a mean of 100 and a standard deviation of 15. What percentage of people have an IQ score
    10·1 answer
  • Is 5y4 + 2y + 4y² + 2x + 9<br> A: Quadratic<br> B: Quartic<br> C: Cubic<br> D: Quintic
    15·1 answer
  • 20/14 is what the simplify fraction and give the answer as a mixed number in lower. terms
    5·2 answers
  • Use matrix operations and substitution to determine which of the following numerical values for z can be substituted into the se
    13·1 answer
  • Marcus bout w movie posters for $4 each. write an algebraic expression for the total amount Marcus spent
    6·1 answer
  • What are the first four terms of the sequence represented by the expression n(n - 2) -3 ?
    11·1 answer
  • What is 10% of 7/8 of 160
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!