Answer:
5446.8 J
Explanation:
From the question given above, the following data were obtained:
Mass (M) = 50 g
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Specific heat capacity (C) = 0.89 J/gºC
Heat (Q) required =?
Next, we shall determine the change in the temperature. This can be obtained as follow:
Initial temperature (T₁) = 70 °C
Final temperature (T₂) = 192.4 °C
Change in temperature (ΔT) =?
ΔT = T₂ – T₁
ΔT = 192.4 – 70
ΔT = 122.4 °C
Finally, we shall determine the heat required to heat up the block of aluminum as follow:
Mass (M) = 50 g
Specific heat capacity (C) = 0.89 J/gºC
Change in temperature (ΔT) = 122.4 °C
Heat (Q) required =?
Q = MCΔT
Q = 50 × 0.89 × 122.4
Q = 5446.8 J
Thus, the heat required to heat up the block of aluminum is 5446.8 J
Answer: The precipitate formed is 
Explanation:
A double displacement reaction is one in which exchange of ions take place. The salts which are soluble in water are designated by symbol (aq) and those which are insoluble in water and remain in solid or precipitated form are represented by (s) after their chemical formulas.
A double displacement reaction in which one of the product is formed as a solid is called as precipitation reaction.
The balanced chemical equation is:

Answer:
Here
Explanation:
This is an acid-base reaction (neutralization): CaCO3 is a base, HCl is an acid.
Answer/Explanation:
In June 1998 in Japan a scientist discovered that neutrinos (which is a type of particle) has weight, mass. This was later proven with some very convincing strong evidence.
<u><em>~ LadyBrain</em></u>
<span>The Lewis structure for CO has 10 valence electrons. For the CO Lewis structure you'll need a triple bond between the Carbon and Oxygen atoms in order to satisfy the octets of each atom while still using the 10 valence electrons available for the CO molecule.</span>