Velocity and mass are directly proportional to the quantity of momentum by:
p = mv. Therefore, and increase in either velocity or mass will lead to an increase in momentum and vice versa. Momentum during a reaction is always conserved, meaning that the mass and initial velocity before a reaction will always be equal to the change in mass and velocity produced after the reaction. Kinetic energy after a reaction, however, is not always conserved. For example if a fast moving vehicle collided with a stationary vehicle, and moved together, the overall kinetic energy would be after the reaction, as a heaver mass would be moved by the same velocity causing a decrease in kinetic energy.
I don't know if this is exactly what you are looking for, but in physics this is how it is understood.
Answer:
The answer to your question is: 6.55 x 10 ²³ atoms of Br
Explanation:
CH2Br2 = 37.9 g
MW CH2Br2 = (12 x 1) + (2 x 1) + (80 x 2) = 174 g
174 g of CH2Br2 ------------------ 160 g of Br2
37.9 g of CH2Br2 --------------- x
x = 37.9 x 160/174 = 34.85 g of Br
1 mol of Br ----------------- 160 g Br2
x ---------------- 174 g Be2
x = 174 x 1 /160 = 1.088 mol of Br2
1 mol of Br ----------------- 6.023 x 10 ²³ atoms
1.088 mol of Br ------------- x
x = 1.088 x 6.023 x 10 ²³ / 1 = 6.55 x 10 ²³ atoms
Answer:
Pb(NO3)2(aq) + 2NaCl(aq) -> 2NaNO3(aq)+PbCl2(s)
Explanation:
Pb(NO3)2(aq)+NaCl(aq) -> NaNO3(aq)+PbCl2(s)
This is how it starts out.
Left:
Right
So the place to start with this equation is to bring the Cls up to 2
Pb(NO3)2(aq)+2NaCl(aq) -> NaNO3(aq)+PbCl2(s)
But the Nas are now out of kilter.
Pb(NO3)2(aq)+ 2NaCl(aq) -> NaNO3(aq)+PbCl2(s)
Now the right has a problem. There's only 1 Na
Pb(NO3)2(aq) + 2 NaCl(aq) -> 2NaNO3(aq)+PbCl2(s)
Check it out. It looks like we are done.
<span>The chemical description of water is H2O, which means, it is composed of 2 hydrogen atoms and 1 oxygen atom. The answer to this item is the fourth option, " It is clear and colorless." When water is added with calcium, clear, colorless bubbles are formed. This explains a reaction of water with acid. The following are additional facts about water properties: Density: 1 g/cm³
Boiling point: 100 °C
Molar mass: 18.01528 g/mol
Melting point: 0 °C
Formula: H2O</span>
Answer:
72.22 g
Explanation:
975 mL Mercury× 13.5 g/mL = 72.22 g