Answer:
470 °C
Explanation:
This looks like a case where we can use Charles’ Law:

Data:
V₁ = 20 L; T₁ = 100 °C
V₂ = 40 L; T₂ = ?
Calculations:
(a) Convert the temperature to kelvins
T₁ = (100 + 273.15) K = 373.15 K
(b) Calculate the new temperature

Note: The answer can have only two significant figures because that is all you gave for the volumes.
(c) Convert the temperature to Celsius
T₂ = (750 – 273.15) °C = 470 °C
Moles= grams of compound/molar mass of compound ??
Answer:
A. False.
Every substance contains the same number of molecules i.e 6.02x10^23 molecules
B. False.
Mass conc. = number mole x molar Mass
Mass conc. of 1mole of N2 = 1 x 28 = 28g
Mass conc. of 1mol of Ar = 1 x 40 = 40g
The mass of 1mole of Ar is greater than the mass of 1mole of N2
C. False.
Molar Mass of N2 = 2x14 = 28g/mol
Molar Mass of Ar = 40g/mol
The molar mass of Ar is greater than that of N2.
Explanation:
Answer:
0.51M
Explanation:
Given parameters:
Initial volume of NaBr = 340mL
Initial molarity = 1.5M
Final volume = 1000mL
Unknown:
Final molarity = ?
Solution;
This is a dilution problem whereas the concentration of a compound changes from one to another.
In this kind of problem, we must establish that the number of moles still remains the same.
number of moles initially before diluting = number of moles after dilution
Number of moles = Molarity x volume
Let us find the number of moles;
Number of moles = initial volume x initial molarity
Convert mL to dm³;
1000mL = 1dm³
340mL gives
= 0.34dm³
Number of moles = initial volume x initial molarity = 0.34 x 1.5 = 0.51moles
Now to find the new molarity/concentration;
Final molarity =
=
= 0.51M
We can see a massive drop in molarity this is due to dilution of the initial concentration.
That element is manganese. As they are in same horizontal row (period) and are next to each other. That is why they show same properties.
Hope this helps xox :)