2 Al + 6 HCl → 2 AlCl₃ + 3 H₂ (single displacement)
Ca + Br₂ → CaBr₂ (synthesis)
4 NH₃ + 5 O₂ → 4 NO + 6 H₂O (combustion)
2 NaCl → 2 Na + Cl₂ (decomposition)
FeS + 2 HCl → FeCl₂ + H₂S (double displacement)
single displacement - is a chemical reaction of the following type: A + BC → AC + B
double displacement - is a chemical reaction of the following type: AB + CD → AC + BD
synthesis - the chemical product is obtained by combining in a synthesis the constituent elements
combustion - usually a exothermic reaction of a particular compound with oxygen
decomposition - degradation of a compound in simpler elements
Zinc would be considered the strongest reducing agent.
<h3>Reducing agent</h3>
A reducing agent is a chemical species that "donates" one electron to another chemical species in chemistry (called the oxidizing agent, oxidant, oxidizer, or electron acceptor). Earth metals, formic acid, oxalic acid, and sulfite compounds are a few examples of common reducing agents.
Reducers have excess electrons (i.e., they are already reduced) in their pre-reaction states, whereas oxidizers do not. Usually, a reducing agent is in one of the lowest oxidation states it can be in. The oxidation state of the oxidizer drops while the oxidizer's oxidation state, which measures the amount of electron loss, increases. The agent in a redox process whose oxidation state rises, which "loses/donates electrons," which "oxidizes," and which "reduces" is known as the reducer or reducing agent.
Learn more about reducing agent here:
brainly.com/question/2890416
#SPJ4
<h3 />
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
Calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 4.972 atm
V= 9.583 L
n=?
R= 
T=31.8 +273= 304.8 K
Putting value in the given equation:
=n
n= 
Moles = 1.905 moles
1.905 moles of Helium gas are in the tube. Hence, option A is correct.
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
A) For balanced chemical equation: 2HgO(s) → 2Hg(l) + O₂(g).
1) Mole ratio 1: n(HgO) : n(Hg) = 2 : 2 (1 : 1).
2) Mole ratio 2: n(HgO) : n(O₂) = 2 : 1.
3) Mole ratio 3: n(Hg) : n(O₂) = 2 : 1.
B) Balanced chemical equation: 4NH₃(g) + 6NO(g) → 5N₂(g) + 6H₂O(l).
1) Mole ratio 1: n(NH₃) : n(NO) = 4 : 6 (2 : 3).
2) Mole ratio 2: n(NH₃) : n(N₂) = 4 : 5.
3) Mole ratio 3: n(NH₃) : n(H₂O) = 4 : 6 (2 : 3).
4) Mole ratio 4: n(NO) : n(N₂) = 6 : 5.
5) Mole ratio 5: n(NO) : n(H₂O) = 6 : 6 (1 :1).
6) Mole ratio 6: n(N₂) : n(H₂O) = 5 : 6.
Explanation:
a) Both A and R are true and R is the correct
explanation of A.