1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
notka56 [123]
3 years ago
6

2# Find the missing variable (s). Round to the nearest tenth.

Mathematics
1 answer:
mel-nik [20]3 years ago
6 0

Answer:

15 cos(33°) m


Step-by-step explanation

Presumably m stands for meters.

If RS were 1, x would be cos(33°)

Multiply sides of triangle by 15 m

When calculating cos(33°) first make sure cos(90°) comes out zero, not -0.448...

You might be interested in
A text font fits 12 characters per inch.Using the same font how many characters can be expected per yard of text?
Ludmilka [50]

1 foot = 12 inches

 1 yard = 3 feet = 36 inches

36*12 = 432 characters

3 0
3 years ago
Which is greater 45 hundredths or 6 tenths
MA_775_DIABLO [31]
45 hundredths is greayer than 6 tenth because 45 is in the hundredths spot and 6 is in the tenth spot
4 0
4 years ago
Show all work to identify the asymptotes and zero of the function f(x) = 6x / x^2 - 36
eduard

Answer:

Zero of the function f(x) is at x = 0

Vertical Asymptotes at x = ±6

Horizontal Asymptotes at y = 0

Step-by-step explanation:

<h3>Vertical Asymptotes </h3>

For a given function f(x):

Vertical Asymptotes are obtained at those values of x, where the function f(x) tends to infinity, I.e.,

<em>When</em><em> </em><em>x</em><em> </em><em>approaches</em><em> </em><em>some</em><em> </em><em>constant</em><em> </em><em>value</em><em> </em><em>b</em><em>u</em><em>t</em><em> </em><em>th</em><em>e</em><em> </em><em>curve</em><em> </em><em>moves</em><em> </em><em>towards</em><em> </em><em>infinity</em><em>.</em><em> </em>

  • If f(x) is a fraction, it'll tend to infinity when it's denominator becomes zero.

Vertical Asymptotes of the given function can be obtained by walking thru the following steps:

<u>Step I</u>

(Factorise the numerator and denominator)

\mathsf{ f(x) = \frac{6x}{ {x}^{2} - 36 } }

<em>x</em><em>²</em><em> </em><em>-</em><em> </em><em>36</em><em> </em><em>can</em><em> </em><em>be</em><em> </em><em>facto</em><em>rised</em><em> </em><em>into</em><em> </em><em>(</em><em>x</em><em> </em><em>+</em><em> </em><em>6</em><em>)</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>and</em><em>,</em><em> </em><em>ofcourse</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>write</em><em> </em><em>6</em><em>x</em><em> </em><em>as</em><em> </em><em>6</em><em>(</em><em>x</em><em> </em><em>-</em><em> </em><em>0</em><em>)</em><em> </em>

\mathsf{ f(x) = \frac{6(x - 0)}{ (x + 6)(x - 6) } }

<u>Step</u><u> </u><u>II</u>

(Reduce the fraction to its simplest form by canceling out the common factors)

<em>There aren't any common factors in the numerator and denominator in this case.</em>

<u>Step</u><u> </u><u>III</u>

(Look for the values of x which cause the denominator to be zero)

<em>If</em><em> </em><em>we</em><em> </em><em>put</em><em> </em>x = 6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em>

Also,

<em>If</em><em> </em><em>we</em><em> </em><em>substitute</em><em> </em><em>x</em><em> </em><em>with</em><em> </em> -6

<em>denominator</em><em> </em><em>becomes</em><em> </em><em>0</em><em>.</em><em> </em>

The two values of x indicate the two Vertical Asymptotes of the function f(x).

Therefore,

<u>Vertical</u><u> </u><u>Asymptotes</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>given</u><u> </u><u>function</u><u> </u><u>f</u><u>(</u><u>x</u><u>)</u><u> </u><u>are</u><u>:</u>

\boxed{ \mathsf{x =  \pm6}}

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3 /><h3>Horizontal Asymptotes:</h3>

Horizontal Asymptotes are obtained When x tends to infinity and y approaches some constant value.

I'll be using the concept of limits for this.

\mathsf{y = \frac{6x}{ {x}^{2} - 36 }  }

<em>dividing</em><em> </em><em>and</em><em> </em><em>multiplying</em><em> </em><em>by</em><em> </em><em>x</em><em>²</em><em> </em><em>(</em><em>Yep</em><em>!</em><em> </em><em>so</em><em> </em><em>if</em><em> </em><em>x</em><em> </em><em>becomes</em><em> </em><em>infinity</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em> </em><em>and</em><em> </em><em>1</em><em>/</em><em> </em><em>x</em><em>²</em><em> </em><em>all</em><em> </em><em>such</em><em> </em><em>terms</em><em> </em><em>become</em><em> </em><em>0</em><em>,</em><em> </em><em>'</em><em>cause</em><em> </em><em>1</em><em>/</em><em> </em><em>∞</em><em> </em><em>is</em><em> </em><em>0</em><em>)</em><em> </em>

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6x}{ {x}^{2} } }{  \frac{ {x}^{2} - 36 }{ {x}^{2} }  } ) }

\implies \mathsf{y = lim_{x \rightarrow \infty }( \frac{ \frac{6}{ x } }{  1-  \frac{36 }{ {x}^{2} }  } ) }

Substitute x with ∞, you get zero/ 1

\implies  \boxed{\mathsf{y = 0}}

So, the horizontal Asymptote of the function is y = 0, that is the x axis

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

<h3>Zeroes of a function:</h3>

The values of x that reduces f(x) to zero are called the zeroes of f(x).

Here, only x = 0 acts as the zero of the function.

[NOTE:

  • For finding <u>Vertical Asymptotes</u><u>,</u>Equate the denominator to 0. And
  • For finding <u>Zeroes</u><u>,</u> Equate the numerator to 0]

__________________

[That's what it's graph looks like. ]

3 0
3 years ago
!! will give brainliest
drek231 [11]

Answer:

zoom in

this is the right answer

don't forget to mark me as brainliest

4 0
3 years ago
In the upcoming election for governor, the most recent poll, based on 900 respondents, predicts that the incumbent will be reele
Paul [167]

Answer:

.0166

Step-by-step explanation:

Central Limit Theorem for proportions:

For a proportion p in a sample of size n, the sampling distribution of the sample proportion will be approximately normal with mean \mu = p and standard deviation \sigma_{p} = \sqrt{\frac{p(1-p)}{n}}

In this question:

n = 900, p = 0.55

What is σρˆ?

The standard deviation of the sample proportion, which is:

\sigma_{p} = \sqrt{\frac{0.55*0.45}{900}} = 0.0166

4 0
3 years ago
Other questions:
  • Help please!!!!!!!!!!!!!!
    5·2 answers
  • Write an equation whose solution is x = 7.
    12·2 answers
  • Find the area of the circle. Round your answer to the nearest hundredth.
    7·1 answer
  • A mile is five thousand, two hundred eighty feet. Three feet’s equals a yard. So a mile is how many yards
    9·2 answers
  • The side length, s, of a cube with volume V can be found using the formula S = V 1/3. Find the side length of a cube whose volum
    6·1 answer
  • 1. Choose the best property to fill in the blank:
    10·1 answer
  • In your own words, describe the relationship between the temperature of the city and the number of cups of hot chocolate sold. (
    13·2 answers
  • A pair of jeans cost $85 but are on sale for 45% off. What is the sale price?
    12·1 answer
  • Please help asap thank you!!
    14·1 answer
  • Which graph represents the function of f(x) = the quantity of 4 x squared minus 16, all over 2 x minus 4 ? (2 points) graph of 2
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!