1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet [91]
3 years ago
15

The difference in electric potential between a thunder cloud and the ground is 1.53 108 V. Electrons move from the ground which

is at a lower potential to the cloud which is at a higher potential. Determine the change in electric potential energy of one of the electrons that move to the cloud.
Physics
1 answer:
Kryger [21]3 years ago
8 0

Answer:

=−2.451 330 152 1*10^27J

Explanation:

The electric potential=the Voltage * Charge: 

E = VQ

V = 1.53x10^8 V (positive, because the cloud has a higher potential)

Q = -1.60217657 x10^19 C (the charge of an electron)

E = (1.53x10^8 V )* (-1.60217657 x10^19 C)

E=−2.451 330 152 1*10^27J

The negative sign indicates that the potential energy is decreased by the movement of the electron.

You might be interested in
Masses A and B rest on very light pistons that enclose a fluid.There is no friction between the pistons and the cylinders they f
RSB [31]

Answer:

D)Not enough information

Explanation:

According to Pascal's principle, the pressure exerted on the two pistons is equal:

p_A = p_B

Pressure is given by the ratio between force F and area A, so we can write

\frac{F_A}{A_A}=\frac{F_B}{A_B}

The force exerted on each piston is just equal to the weight of the corresponding mass: F=W=mg, where m is the mass and g is the gravitational acceleration. So the equation becomes

\frac{m_A g}{A_A}=\frac{m_B g}{A_B}

Now we can rewrite the mass as the product of volume, V, times density, d:

\frac{V_A d_A g}{A_A}=\frac{V_B d_B g}{A_B}

We also know that A_B = 2.0 m^2\\A_A = 1.0 m^2

So we can further re-arrange the equation (and simplify g as well):

\frac{V_A d_A}{1}=\frac{V_B d_B}{2}

\frac{d_A}{d_B}=\frac{V_B}{2V_A}

We are also told that block B has bigger volume than block A: V_B > V_A. However, this information is not enough to allow us to say if the fraction on the right is greater than 1 or smaller than 1: therefore, we cannot conclude anything about the densities of the two objects.

3 0
3 years ago
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
A 120-kg object and a 420-kg object are separated by 3.00 m At what position (other than an infinitely remote one) can the 51.0-
djverab [1.8K]

Answer:

1.045 m from 120 kg

Explanation:

m1 = 120 kg

m2 = 420 kg

m = 51 kg

d = 3 m

Let m is placed at a distance y from 120 kg so that the net force on 51 kg is zero.

By use of the gravitational force

Force on m due to m1 is equal to the force on m due to m2.

\frac{Gm_{1}m}{y^{2}}=\frac{Gm_{2}m}{\left ( d-y \right )^{2}}

\frac{m_{1}}{y^{2}}=\frac{m_{2}}{\left ( d-y \right )^{2}}

\frac{3-y}{y}=\sqrt{\frac{7}{2}}

3 - y = 1.87 y

3 = 2.87 y

y = 1.045 m

Thus, the net force on 51 kg is zero if it is placed at a distance of 1.045 m from 120 kg.

6 0
3 years ago
If 8000 C of charge pass through a section of wire in 2 minutes, what would the current be?
mars1129 [50]

Answer:

we know that current = charge/time

Explanation:

therefore,

A = 8000/120

A => 66.666.... amperes

8 0
3 years ago
Problem 3.
Korolek [52]

Answer:

143.352 watt.

Explanation:

So, in the question above we are given the following parameters or data or information that is going to assist us in answering the question above efficiently. The parameters are:

"A 1.8 m wide by 1.0 m tall by 0.65m deep home freezer is insulated with 5.0cm thick Styrofoam insulation"

The inside temperature of the freezer = -20°C.

Thickness = 5.0cm = 5.0 × 10^-2 m.

Step one: Calculate the surface area of the freezer. That can be done by using the formula below:

Area = 2[ ( Length × breadth) + (breadth × height) + (length × height) ].

Area = 2[ (1.8 × 0.65) + (0.65 × 1.0) + (1.8 × 1.0)].

Area = 7.24 m^2.

Step two: Calculate the rate of heat transfer by using the formula below;

Rate of heat transfer =[ thermal conductivity × Area (T1 - T2) ]/ thickness.

Rate of heat transfer = 0.022 × 7.24(25+20)/5.0 × 10^-2 = 143.352 watt.

8 0
3 years ago
Other questions:
  • Certain insects can achieve seemingly impossible accelerations while jumping. the click beetle accelerates at an astonishing 400
    10·1 answer
  • A block is suspended from a spring. The spring is stretched .2 meters. If the spring constant is 200 newtons per meters, what is
    7·1 answer
  • a plane travels a total distance of 1,223. If the the plane travels 460 mph for 75 minutes. Then, how long in minutes does it tr
    10·1 answer
  • Assume: The bullet penetrates into the block and stops due to its friction with the block. The compound system of the block plus
    5·1 answer
  • A 2.0 kg mass is lifted 4.0 m above the ground. find the change in gravitational energy
    11·1 answer
  • Two objects, T and B, have identical size and shape and have uniform density. They are carefully placed in a container filled wi
    9·1 answer
  • What is the formula to calculate moisture content?
    14·1 answer
  • Particles 1 and 2 each mass m fixed to the ends of a rigid massless rod of length L1 + l2 with L1 = 20cm and l2 = 80 cm. The rod
    14·1 answer
  • Which formula describes Boyle's law?
    5·1 answer
  • To measure the current through and the voltage across a resistor in a circuit, you should place the ammeter in _____ with the re
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!