The major shortcoming of Rutherford's model was that it was incomplete. It did not explain how the atom's negatively charged electrons are distrubuted in the space surronding its positively charged nucleus. A form of energy that exhibits wavelike behavior as it travels through space
<h3><u>Question: </u></h3>
The equation for the speed of a satellite in a circular orbit around the Earth depends on mass. Which mass?
a. The mass of the sun
b. The mass of the satellite
c. The mass of the Earth
<h3><u>Answer:</u></h3>
The equation for the speed of a satellite orbiting in a circular path around the earth depends upon the mass of Earth.
Option c
<h3><u>
Explanation:
</u></h3>
Any particular body performing circular motion has a centripetal force in picture. In this case of a satellite revolving in a circular orbit around the earth, the necessary centripetal force is provided by the gravitational force between the satellite and earth. Hence
.
Gravitational force between Earth and Satellite: 
Centripetal force of Satellite :
Where G = Gravitational Constant
= Mass of Earth
= Mass of satellite
R= Radius of satellite’s circular orbit
V = Speed of satellite
Equating
, we get
Speed of Satellite 
Thus the speed of satellite depends only on the mass of Earth.
Copper because it contains alot of electricity
Answer:
The radius of the curve that Car 2 travels on is 380 meters.
Explanation:
Speed of car 1, 
Radius of the circular arc, 
Car 2 has twice the speed of Car 1, 
We need to find the radius of the curve that Car 2 travels on have to be in order for both cars to have the same centripetal acceleration. We know that the centripetal acceleration is given by :

According to given condition,


On solving we get :

So, the radius of the curve that Car 2 travels on is 380 meters. Hence, this is the required solution.
Answer:
Final velocity at the top of the ramp is 6.58m/s
Explanation
Check the attachment