1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
13

If a car changes its velocity from 32 km/hr to 54 km/hr in 8.0 seconds, what is its acceleration?

Physics
2 answers:
igomit [66]3 years ago
5 0

Answer:

a = 2.75 m/s^2

Explanation:

Using the equation for the acceleration = (final velocity - initial velocity)/ time

= 54 - 32 / 8

= 22 / 8

= 2.75 m/s^2

Stella [2.4K]3 years ago
3 0
Use the equation for the acceleration
A = final velocity - initial velocity divided by time final - time initial
A= 54 - 32 / 8 - 0
A= 22 / 8 
A= 2.75 m/s^2 
Hope this helps!
You might be interested in
Which object has the most kinetic energy? a bus a car a plane a bicycle
loris [4]

Answer:I would guess a plane

Assuming they all Thad the same velocity....

4 0
3 years ago
Un atleta de 70 kg de masa que ha efectuado un salto de altura cae una vez que ha
Allushta [10]

Answer:

a) the elastic force of the pole directed upwards and the force of gravity with dissects downwards

Explanation:

The forces on the athlete are

a) at this moment the athlete presses the garrolla against the floor, therefore it acquires a lot of elastic energy, which is absorbed by the athlete to rise and gain potential energy,

therefore the forces are the elastic force of the pole directed upwards and the force of gravity with dissects downwards

b) when it falls, in this case the only force to act is batrachium by the planet, this is a projectile movement for very high angles

c) When it reaches the floor, it receives an impulse that opposes the movement created by the mat. The attractive force is the attraction of gravity.

3 0
2 years ago
Help pls i need this right now
pantera1 [17]

Answer:

The x-component of F_{3} is 56.148 newtons.

Explanation:

From 1st and 2nd Newton's Law we know that a system is at rest when net acceleration is zero. Then, the vectorial sum of the three forces must be equal to zero. That is:

\vec F_{1} + \vec F_{2} + \vec F_{3} = \vec O (1)

Where:

\vec F_{1}, \vec F_{2}, \vec F_{3} - External forces exerted on the ring, measured in newtons.

\vec O - Vector zero, measured in newtons.

If we know that \vec F_{1} = (70.711,70.711)\,[N], \vec F_{2} = (-126.859, 46.173)\,[N], F_{3} = (F_{3,x},F_{3,y}) and \vec O = (0,0)\,[N], then we construct the following system of linear equations:

\Sigma F_{x} = 70.711\,N - 126.859\,N +F_{3,x} = 0\,N (2)

\Sigma F_{y} = 70.711\,N + 46.173\,N+F_{3,y} = 0\,N (3)

The solution of this system is:

F_{3,x} = 56.148\,N, F_{3,y} = -116.884\,N

The x-component of F_{3} is 56.148 newtons.

5 0
2 years ago
A 4.40-kilogram hoop starts from rest at a height 1.70 m above the base of an inclined plane and rolls down under the influence
Anestetic [448]

Answer:

The linear velocity is  v=4.08m/s

Explanation:

According to the law of conservation of energy

   The potential energy possessed by the  hoop at the top of the inclined plane is converted to the kinetic energy at the foot of the inclined plane

        The kinetic energy can be mathematically represented as

                    KE = \frac{mv^2}{2} + \frac{Iw}{2}

Where I is the moment of inertia possessed by the hoop  which is mathematically represented as

                 I = mr^2

Here R is the radius of the hoop

         w is the angular velocity which the hoop has at the bottom of the lower part of the inclined plane which is mathematically represented as

                          w = \frac{v}{r}

Where v linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface

      Now expressing the above statement mathematically

            potential \ energy = \frac{mv^2}{y} + \frac{Iw^2}{2}

               mgh = \frac{mv^2}{y} + \frac{Iw^2}{2}

=>            mgh =\frac{mv^2}{2} + \frac{(mr^2)(\frac{v}{r})^2 }{2}  

=>          mgh = \frac{mv^2}{2} + \frac{mv^2}{2}

=>           mgh = mv^2

=>              v = \sqrt{gh}

Substituting values

                v = \sqrt{9.81 * 1.7}

                  v=4.08m/s

4 0
3 years ago
Read 2 more answers
An example of a double reaction is
butalik [34]
C. is the only double reaction here given that a double replacement reaction involves two compounds that exchange previous components, and C is the only solution with two compounds present
8 0
3 years ago
Other questions:
  • The distance traveled by an object can be modeled by the equation d = ut + 0.5at2 where d = distance, u = initial velocity, t =
    11·1 answer
  • The amount of WORK done is determined by 2 factors.
    12·1 answer
  • What did Rutherford’s model of the atom include that Thomson’s model did not have?
    5·2 answers
  • Which state of matter has a definite<br> volume but does not have a definite shape
    7·2 answers
  • A. Write two or three sentences to describe the conductivity of an insulator. Explain its conductivity in terms of the electrons
    11·2 answers
  • How do the different forms of potential energy depend on an object's position or chemical composition?
    15·1 answer
  • cample 3.3 Calculate the number of moles for the following: (i) 52 g of He (finding mole from mass) i) x 12.044 x 1023 number of
    13·2 answers
  • When two trains, going in opposite directions, are passing on tracks that are laid out close together, the train cars can often
    5·2 answers
  • I have no idea so i'm screwed please help me
    6·1 answer
  • 9. Electron travelling though two horizontal plates
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!