Answer:
1) p₀ = 45000 N / s
, p₀ '= 1800
, b) I = -45000 N s
, I = 1800 Ns
Explanation:
Impulse equals the change in momentum
I = Δp
1) the initial moment of the car
p₀ = M v
p₀ = 1500 30
p₀ = 45000 N / s
the change at the moment is
Δp = 45000
because the end the car is stopped
moment of the person
P₀ ’= m v
p₀ '= 60 30
p₀ '= 1800
D₀ '= 1800
2) of the momentum change impulse ratio
car
I = Δp
I = -45000 N s
person
I = Δpo '
I = 1800 Ns
3) the object that give the momentum to stop the wall motoring
The person is stopped by the impulse given by the car
a) This area is the one that absorbs most of the vehicle impulse
be) If using a safety painter, the time during which the greater force will act, therefore the lessons decrease
c) The air bag helps reduction in the speed of the person relatively quickly.
Plug in the corresponding values into y = mx + b
8.18 in for y
1.31 in for m
17.2 in for b
8.18 = 1.31x + 17.2
Now bring 17.2 to the left side by subtracting 17.2 to both sides (what you do on one side you must do to the other). Since 17.2 is being added on the right side, subtraction (the opposite of addition) will cancel it out (make it zero) from the right side and bring it over to the left side.
8.18 - 17.2 = 1.31x
-9.02 = 1.31x
Then divide 1.31 to both sides to isolate x. Since 1.31 is being multiplied by x, division (the opposite of multiplication) will cancel 1.31 out (in this case it will make 1.31 one) from the right side and bring it over to the left side.
-9.02/1.31 = 1.31x/1.31
x ≈ -6.8855
x is roughly -6.89
Hope this helped!
~Just a girl in love with Shawn Mendes
Answer:
A) The acceleration is zero
<em>B) The total distance is 112 m</em>
Explanation:
<u>Velocity vs Time Graph</u>
It shows the behavior of the velocity as time increases. If the velocity increases, then the acceleration is positive, if the velocity decreases, the acceleration is negative, and if the velocity is constant, then the acceleration is zero.
The graph shows a horizontal line between points A and B. It means the velocity didn't change in that interval. Thus the acceleration in that zone is zero.
A. To calculate the acceleration, we use the formula:

Let's pick the extremes of the region AB: (0,8) and (12,8). The acceleration is:

This confirms the previous conclusion.
B. The distance covered by the body can be calculated as the area behind the graph. Since the velocity behaves differently after t=12 s, we'll split the total area into a rectangle and a triangle.
Area of rectangle= base*height=12 s * 8 m/s = 96 m
Area of triangle= base*height/2 = 4 s * 8 m/s /2= 16 m
The total distance is: 96 m + 16 m = 112 m
Answer:19.32 m/s
Explanation:
Given
initial speed of car(u)=4.92 m/s
acceleration(a)=
Speed of car after 4.5 s
using equation of motion
v=u+at

v=19.32 m/s
Displacement of the car after 4.5 s



s=54.54 m
Answer:
342,000kg
Explanation:
p=mv
8.55*10^7 kg*m/s=m(900 km/h)
85,500,000 kg*m/s=m(900 km/h)
(85,500,000 kg*m/s)/(900 km/h)=m
Get same units.... 900km/h = 250m/s
m/s cancel in the division, you are left with just kg!!
85,500,000/250=342,000kg! That's it!